Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres

被引:762
作者
Yu, Jiaguo [1 ]
Yu, Xiaoxiao [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
关键词
D O I
10.1021/es800036n
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
ZnO hollow spheres with porous crystalline shells were one-pot fabricated by hydrothermal treatment of glucose/ZnCl2 mixtures at 180 degrees C for 24 h, and then calcined at different temperatures for 4 h. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption isotherms. The photocatalytic activity of the as-prepared samples was evaluated by photocatalytic decolorization of Rhodamine B aqueous solution at ambient temperature. The results indicated that the average crystallite size, shell thickness, specific surface areas, pore structures, and photocatalytic activity of ZnO hollow spheres could be controlled by varying the molar ratio of glucose to zinc ions (R). With increasing R, the photocatalytic activity increases and reaches a maximum value at R = 15, which can be attributed to the combined effects of several factors such as specific surface area, the porous structure and the crystallite size. Further results show that hollow spheres can be more readily separated from the slurry system by filtration or sedimentation after photocatalytic reaction and reused than conventional powder photocatalyst. After many recycles for the photodegradation of RhB, the catalyst does not exhibit any great loss in activity, confirming ZnO hollow spheres is stability and not photocorroded. The prepared ZnO hollow spheres are also of great interest in solar cell, catalysis, separation technology, biomedical engineering, and nanotechnology.
引用
收藏
页码:4902 / 4907
页数:6
相关论文
共 36 条
[2]  
Caruso F, 2000, CHEM-EUR J, V6, P413, DOI 10.1002/(SICI)1521-3765(20000204)6:3<413::AID-CHEM413>3.0.CO
[3]  
2-9
[4]   Synthesis of hollow ZnO microspheres by an integrated autoclave and pyrolysis process [J].
Duan, JX ;
Huang, XT ;
Wang, EK ;
Ai, HH .
NANOTECHNOLOGY, 2006, 17 (06) :1786-1790
[5]   Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6 [J].
Fu, HB ;
Pan, CS ;
Yao, WQ ;
Zhu, YF .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (47) :22432-22439
[6]   ENVIRONMENTAL APPLICATIONS OF SEMICONDUCTOR PHOTOCATALYSIS [J].
HOFFMANN, MR ;
MARTIN, ST ;
CHOI, WY ;
BAHNEMANN, DW .
CHEMICAL REVIEWS, 1995, 95 (01) :69-96
[7]   Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity [J].
Jing Liqiang ;
Qu Yichun ;
Wang Baiqi ;
Li Shudan ;
Jiang Baojiang ;
Yang Libin ;
Fu Wei ;
Fu Honggang ;
Sun Jiazhong .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (12) :1773-1787
[8]   Effects of noble metal modification on surface oxygen composition, charge separation and photocatalytic activity of ZnO nanoparticles [J].
Jing, LQ ;
Wang, DJ ;
Wang, BQ ;
Li, SD ;
Xin, BF ;
Fu, HG ;
Sun, JZ .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2006, 244 (1-2) :193-200
[9]   Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions [J].
Khodja, AA ;
Sehili, T ;
Pilichowski, JF ;
Boule, P .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2001, 141 (2-3) :231-239
[10]   Nanowire dye-sensitized solar cells [J].
Law, M ;
Greene, LE ;
Johnson, JC ;
Saykally, R ;
Yang, PD .
NATURE MATERIALS, 2005, 4 (06) :455-459