Nonlinear model structure detection using optimum experimental design and orthogonal least squares

被引:32
作者
Hong, X [1 ]
Harris, CJ [1 ]
机构
[1] Univ Southampton, Dept Elect & Comp Sci, Image Speech & Intelligent Syst Grp, Southampton SO17 1BJ, Hants, England
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2001年 / 12卷 / 02期
关键词
experimental design; forward regression; structure identification;
D O I
10.1109/72.914539
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A very efficient learning algorithm for model subset selection is introduced based on a new composite cost function that simultaneously optimizes the model approximation ability and model adequacy. The derived model parameters are estimated via forward orthogonal least squares, but the subset selection cost function includes an A-optimality design criterion to minimize the variance of the parameter estimates that ensures the adequacy and parsimony of the final model. An illustrative example is included to demonstrate the effectiveness of the new approach.
引用
收藏
页码:435 / 439
页数:5
相关论文
共 11 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
Atkinson A.C., 1992, OPTIMUM EXPT DESIGNS
[3]  
Brown M, 1994, NEUROFUZZY ADAPTIVE
[4]   ORTHOGONAL LEAST-SQUARES METHODS AND THEIR APPLICATION TO NON-LINEAR SYSTEM-IDENTIFICATION [J].
CHEN, S ;
BILLINGS, SA ;
LUO, W .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 50 (05) :1873-1896
[5]   ORTHOGONAL LEAST-SQUARES LEARNING ALGORITHM FOR RADIAL BASIS FUNCTION NETWORKS [J].
CHEN, S ;
COWAN, CFN ;
GRANT, PM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (02) :302-309
[6]   Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks [J].
Chen, S ;
Wu, Y ;
Luk, BL .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (05) :1239-1243
[7]   Generalized neurofuzzy network modeling algorithms using Bezier-Bernstein polynomial functions and additive decomposition [J].
Hong, X ;
Harris, CJ .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (04) :889-902
[8]   GENERALIZED INVERSES, RIDGE REGRESSION, BIASED LINEAR ESTIMATION, AND NONLINEAR ESTIMATION [J].
MARQUARDT, DW .
TECHNOMETRICS, 1970, 12 (03) :591-+
[9]  
ORR MJL, 1993, NEURAL COMPUT, V7, P954
[10]  
S??derstr??m T., 1989, SYSTEM IDENTIFICATIO