Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes

被引:269
作者
Zhang, Quanxin [1 ]
Guo, Xiaozhi [1 ]
Huang, Xiaoming [1 ]
Huang, Shuqing [1 ]
Li, Dongmei [1 ]
Luo, Yanhong [1 ]
Shen, Qing [2 ,3 ]
Toyoda, Taro [2 ]
Meng, Qingbo [1 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Univ Electrocommun, Fac Informat & Engn, Dept Engn Sci, Tokyo 1828585, Japan
[3] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan
基金
日本科学技术振兴机构;
关键词
SEMICONDUCTOR NANOCRYSTALS; DYE; ELECTRODES; ENERGY; SIZE; RECOMBINATION; SIMULATIONS; SCATTERING; LIQUID; FILMS;
D O I
10.1039/c0cp02099k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
At present, the photovoltaic performance of quantum dot-sensitized solar cells (QDSCs) is still much lower than conventional DSCs. Appropriate porous TiO2 photoanodes for QDSCs need to be further investigated, and optimization of the nanoparticle-based photoanodes is highly desirable as well. In this article, the influence of the structural properties of various TiO2 photoanodes on CdS/CdSe-sensitized solar cells have been systematically studied. Quantitative analyses of light-harvesting efficiency (LHE) and electron-transfer yield (Phi(ET)) for the QDSCs are investigated for the first time. It is revealed that the LHE increases in the long wavelength region with the addition of large size TiO2 particles to the transparent film. In the meantime, the balance between the light scattering and surface area also needs to be controlled, which can significantly restrain the dark current of the device. A double-layer photoanodic structure can give 4.92% of light-to-electricity conversion efficiency with a photoactive area of 0.15 cm(2)
引用
收藏
页码:4659 / 4667
页数:9
相关论文
共 38 条
[1]   Quantum Dot Sensitized Solar Cells. A Tale of Two Semiconductor Nanocrystals: CdSe and CdTe [J].
Bang, Jin Ho ;
Kamat, Prashant V. .
ACS NANO, 2009, 3 (06) :1467-1476
[2]  
Barbe CJ, 1997, J AM CERAM SOC, V80, P3157, DOI 10.1111/j.1151-2916.1997.tb03245.x
[3]   Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method [J].
Bisquert, J ;
Zaban, A ;
Greenshtein, M ;
Mora-Seró, I .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (41) :13550-13559
[4]   Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications [J].
Chen, Xiaobo ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2007, 107 (07) :2891-2959
[5]   High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells [J].
Diguna, Lina J. ;
Shen, Qing ;
Kobayashi, Junya ;
Toyoda, Taro .
APPLIED PHYSICS LETTERS, 2007, 91 (02)
[6]   Computer simulations of light scattering and absorption in dye-sensitized solar cells [J].
Ferber, J ;
Luther, J .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1998, 54 (1-4) :265-275
[7]   Improving the performance of colloidal quantum-dot-sensitized solar cells [J].
Gimenez, Sixto ;
Mora-Sero, Ivan ;
Macor, Lorena ;
Guijarro, Nestor ;
Lana-Villarreal, Teresa ;
Gomez, Roberto ;
Diguna, Lina J. ;
Shen, Qing ;
Toyoda, Taro ;
Bisquert, Juan .
NANOTECHNOLOGY, 2009, 20 (29)
[8]   Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces [J].
Gregg, BA ;
Pichot, F ;
Ferrere, S ;
Fields, CL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (07) :1422-1429
[9]   CdSe Quantum Dot-Sensitized TiO2 Electrodes: Effect of Quantum Dot Coverage and Mode of Attachment [J].
Guijarro, Nestor ;
Lana-Villarreal, Teresa ;
Mora-Sero, Ivan ;
Bisquert, Juan ;
Gomez, Roberto .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (10) :4208-4214
[10]   Study on the effect of measuring methods on incident photon-to-electron conversion efficiency of dye-sensitized solar cells by home-made setup [J].
Guo, Xiao-Zhi ;
Luo, Yan-Hong ;
Zhang, Yi-Duo ;
Huang, Xiao-Chun ;
Li, Dong-Mei ;
Meng, Qing-Bo .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (10)