Protonation of an H2O dimer by a zeolitic Bronsted acid site

被引:27
作者
Zygmunt, SA [1 ]
Curtiss, LA
Iton, LE
机构
[1] Valparaiso Univ, Dept Phys & Astron, Valparaiso, IN 46383 USA
[2] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA
[3] Argonne Natl Lab, Div Sci Mat, Argonne, IL 60439 USA
关键词
D O I
10.1021/jp003469p
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The potential energy surface for the interaction of a water dimer with the Bronsted acid site in a zeolite represented by a Si4AlO4H13 cluster is examined using the B3LYP density functional method. Local energy minima corresponding to both neutral and ion-pair adsorption structures were located, as well as the transition state for proton transfer to the dimer. The neutral complex is more stable than the ion-pair structure by 2.9 kcal/mol.at the highest level of calculation. In all structures both ends of the adsorbed species form hydrogen bonds (H . . .O) to the zeolitic cluster. The zero point energy corrections cause the energy of the ion-pair structure to rise above that of the transition state, indicating that the ion-pair structure is not a true local energy minimum on the potential energy surface. These results reveal that, like the protonated water monomer complex, the protonated water dimer complex is a transition state for proton exchange between adjacent framework oxygen atoms in our cluster model of the zeolite. However, since the energy differences between the three structures investigated here are so small, the protonated water dimer might possibly be a true equilibrium structure for a particular zeolite framework. The calculated vibrational frequencies for the adsorbed complexes are compared with experimental infrared spectra. This comparison suggests that experimental spectra for zeolite-water systems with loadings of two or more water molecules per acid site are a superposition of features from both neutral and ion-pair-water complexes. This interpretation is consistent with the calculated energies of the two complexes.
引用
收藏
页码:3034 / 3038
页数:5
相关论文
共 29 条
[1]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[2]   HYDROPHOBIC PROPERTIES OF ZEOLITES [J].
CHEN, NY .
JOURNAL OF PHYSICAL CHEMISTRY, 1976, 80 (01) :60-64
[3]   Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation [J].
Curtiss, LA ;
Raghavachari, K ;
Redfern, PC ;
Pople, JA .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (03) :1063-1079
[4]   Gaussian-2 (G2) theory: Reduced basis set requirements [J].
Curtiss, LA ;
Redfern, PC ;
Smith, BJ ;
Radom, L .
JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (13) :5148-5152
[5]   GAUSSIAN-2 THEORY FOR MOLECULAR-ENERGIES OF 1ST-ROW AND 2ND-ROW COMPOUNDS [J].
CURTISS, LA ;
RAGHAVACHARI, K ;
TRUCKS, GW ;
POPLE, JA .
JOURNAL OF CHEMICAL PHYSICS, 1991, 94 (11) :7221-7230
[6]   PROPERTIES OF HYDROGEN-BONDED COMPLEXES OBTAINED FROM THE B3LYP FUNCTIONAL WITH 6-31G(D,P) AND 6-31+G(D,P) BASIS-SETS - COMPARISON WITH MP2/6-31+G(D,P) RESULTS AND EXPERIMENTAL-DATA [J].
DELBENE, JE ;
PERSON, WB ;
SZCZEPANIAK, K .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (27) :10705-10707
[7]  
Frisch M.J., 1995, GAUSSIAN 94
[8]   ROTATION-VIBRATION SPECTRA OF DEUTERATED WATER VAPOR [J].
GAILAR, N ;
PLYLER, EK .
JOURNAL OF CHEMICAL PHYSICS, 1956, 24 (06) :1139-1165
[9]   A density functional study of molecular adsorption in zeolites [J].
Gale, JD .
TOPICS IN CATALYSIS, 1996, 3 (1-2) :169-194
[10]   Adsorption of water and methanol on zeolite Bronsted acid sites: An ab initio, embedded cluster study including electron correlation [J].
Greatbanks, SP ;
Hillier, IH ;
Burton, NA ;
Sherwood, P .
JOURNAL OF CHEMICAL PHYSICS, 1996, 105 (09) :3770-3776