Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species

被引:919
作者
Bjorgen, Morten
Svelle, Stian
Joensen, Finn
Nerlov, Jesper
Kolboe, Stein
Bonino, Francesca
Palumbo, Luisa
Bordiga, Silvia
Olsbye, Unni
机构
[1] Haldor Topsoe Res Labs, DK-2800 Lyngby, Denmark
[2] Univ Oslo, Dept Chem, Ctr Mat Sci & Nanotechnol, N-0315 Oslo, Norway
[3] Univ Turin, Ctr Riferimento INSTM, NIS Ctr Excellence, Dept Inorgan Phys & Mat Chem, I-10125 Turin, Italy
关键词
ZSM-5; MFI; MTO; MTH; MTG; methanol; zeolite; mechanism; hydrocarbon pool; coking; deactivation;
D O I
10.1016/j.jcat.2007.04.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study examined the reaction mechanism with respect to both catalyst deactivation and product formation in the conversion of methanol to hydrocarbons over zeolite H-ZSM-5. The reactivity of the organics residing in the zeolite voids during the reaction was assessed by transient C-12/C-13 methanol-switching experiments. In contrast to previously investigated catalysts (H-SAPO-34 and H-beta), hexamethylbenzene is virtually unreactive in H-ZSM-5 and is thus not a relevant reaction intermediate for alkene formation. However, the lower methylbenzenes are reaction intermediates in a hydrocarbon pool-type mechanistic cycle and are responsible for the formation of ethene and propene. An additional reaction cycle not applicable for ethene also must be taken into account. The C3+ alkenes are to formed through rapid alkene methylation and cracking steps to a considerable extent; thus, methanol is converted to hydrocarbons according to two catalytic cycles over H-ZSM-5. Moreover, in contrast to what occurs for large-pore zeolites/zeotypes, molecules larger than hexamethyl benzenes are not built up inside the H-ZSM-5 channels during deactivation. Thus, deactivation is explained by coke formation on the external surface of the zeolite crystallites only. This is a plausible rationale for the superior lifetime properties of H-ZSM-5 in the methanol-to-hydrocarbon reaction. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:195 / 207
页数:13
相关论文
共 42 条
[1]   Theoretical study of the methylbenzene side-chain hydrocarbon pool mechanism in methanol to olefin catalysis [J].
Arstad, B ;
Nicholas, JB ;
Haw, JF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (09) :2991-3001
[2]   The reactivity of molecules trapped within the SAPO-34 cavities in the methanol-to-hydrocarbons reaction [J].
Arstad, B ;
Kolboe, S .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (33) :8137-8138
[3]   Methanol-to-hydrocarbons reaction over SAPO-34. Molecules confined in the catalyst cavities at short time on stream [J].
Arstad, B ;
Kolboe, S .
CATALYSIS LETTERS, 2001, 71 (3-4) :209-212
[4]   COKE DEPOSITS ON H-ZSM-5 ZEOLITE [J].
BEHRSING, T ;
JAEGER, H ;
SANDERS, JV .
APPLIED CATALYSIS, 1989, 54 (03) :289-302
[5]   Conversion of methanol to hydrocarbons: the reactions of the heptamethylbenzenium cation over zeolite H-beta [J].
Bjorgen, M ;
Olsbye, U ;
Svelle, S ;
Kolboe, S .
CATALYSIS LETTERS, 2004, 93 (1-2) :37-40
[6]   Spectroscopic evidence for a persistent benzenium cation in zeolite H-beta [J].
Bjorgen, M ;
Bonino, F ;
Kolboe, S ;
Lillerud, KP ;
Zecchina, A ;
Bordiga, S .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (51) :15863-15868
[7]   The methanol-to-hydrocarbons reaction:: insight into the reaction mechanism from [12C]benzene and [13C]methanol coreactions over zeolite H-beta [J].
Bjorgen, M ;
Olsbye, U ;
Petersen, D ;
Kolboe, S .
JOURNAL OF CATALYSIS, 2004, 221 (01) :1-10
[8]   Coke precursor formation and zeolite deactivation: mechanistic insights from hexamethylbenzene conversion [J].
Bjorgen, M ;
Olsbye, U ;
Kolboe, S .
JOURNAL OF CATALYSIS, 2003, 215 (01) :30-44
[9]   Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process [J].
Chen, JQ ;
Bozzano, A ;
Glover, B ;
Fuglerud, T ;
Kvisle, S .
CATALYSIS TODAY, 2005, 106 (1-4) :103-107
[10]   ON THE REACTION-MECHANISM FOR PROPENE FORMATION IN THE MTO REACTION OVER SAPO-34 [J].
DAHL, IM ;
KOLBOE, S .
CATALYSIS LETTERS, 1993, 20 (3-4) :329-336