Computational methods for integrals involving functions and Daubechies wavelets

被引:21
作者
Maleknejad, K. [1 ]
Yousefi, M.
Nouri, K.
机构
[1] Iran Univ Sci & Technol, Sch Math, Tehran 16844, Iran
[2] Islamic Azad Univ, Tehran, Iran
[3] Iran Univ Sci & Technol, Sch Math, Tehran 16844, Iran
关键词
gauss quadrature; integral equation; daubechies wavelets; bezout technique; cascade algorithm;
D O I
10.1016/j.amc.2006.12.064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When wavelets are used as basis functions in Galerkin approach to solve the integral equations, Integrals of the form integral(supp(theta j,k))f(x)theta(j,k)(x) dx occur. By a change of variable, these integrals can be translated into integrals involving only theta. In this paper, we find quadrature rule on the supp(theta) for the integrals of the form integral(supp(theta))f(x)theta dx, theta is an element of {phi,psi}. Wavelets in this article are those discovered by Daubechies [I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988) 909-996], where phi is the scaling function and psi is the wavelet function. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1828 / 1840
页数:13
相关论文
共 14 条
[1]  
[Anonymous], 1993, Ten Lectures of Wavelets
[2]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[3]  
Beylkin G., 1992, Wavelets and their applications
[4]  
Chihara T.S., 1978, An Introduction to Orthogonal Polynomials, V13
[5]   USING THE REFINEMENT EQUATION FOR EVALUATING INTEGRALS OF WAVELETS [J].
DAHMEN, W ;
MICCHELLI, CA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (02) :507-537
[6]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[7]   CALCULATION OF GAUSS QUADRATURE RULES [J].
GOLUB, GH ;
WELSCH, JH .
MATHEMATICS OF COMPUTATION, 1969, 23 (106) :221-&
[8]  
GOPINATH RA, 1992, P ISCAS92 SAN DIEG
[9]  
Keinert F., 2004, WAVELETS MULTIWAVELE
[10]   Numerical solution of non-linear Fredholm integral equations by using multiwavelets in the Petrov-Galerkin method [J].
Maleknejad, K ;
Karami, M .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 168 (01) :102-110