Statistical mechanics of voting

被引:22
作者
Meyer, DA [1 ]
Brown, TA
机构
[1] Inst Phys Sci, Ctr Social Computat, Los Alamos, NM USA
[2] Univ Calif San Diego, Dept Math, Project Geometry & Phys, La Jolla, CA 92093 USA
[3] Univ Missouri, Dept Polit Sci, Columbia, MO 65211 USA
关键词
D O I
10.1103/PhysRevLett.81.1718
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Decision procedures aggregating the preferences of multiple agents can produce cycles and hence outcomes which have been described heuristically as "chaotic." We make this description precise by constructing an explicit dynamical system from the agents' preferences and a voting rule. The dynamics form a one-dimensional statistical mechanics model; this suggests the use of the topological entropy to quantify the complexity of the system. We compute the expected complexity of a voting rule and the degree of cohesion/diversity among agents using random matrix models-ensembles of statistical mechanics models-in some representative cases. [S0031-9007(98)06864-1].
引用
收藏
页码:1718 / 1721
页数:4
相关论文
共 32 条
[1]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[2]  
[Anonymous], 1781, HIST ACAD R SCI
[3]  
[Anonymous], 1952, ECON APPL
[4]  
[Anonymous], J CONFLICT RESOLUT
[5]  
Arrow K. J, 1970, Social choice and individual values, V2nd
[6]   UNIFYING IMPOSSIBILITY THEOREMS - A TOPOLOGICAL APPROACH [J].
BARYSHNIKOV, YM .
ADVANCES IN APPLIED MATHEMATICS, 1993, 14 (04) :404-415
[7]   ON THE RATIONALE OF GROUP DECISION-MAKING [J].
Black, Duncan .
JOURNAL OF POLITICAL ECONOMY, 1948, 56 (01) :23-34
[8]   SIMULATION OF GLOBAL AND LOCAL INTRANSITIVITIES IN A SIMPLE VOTING GAME UNDER MAJORITY-RULE [J].
BROWNE, EC ;
JAMES, PA ;
MILLER, MA .
BEHAVIORAL SCIENCE, 1991, 36 (02) :148-156
[9]  
CHICHILNISKY G, 1994, AM ECON REV, V84, P427
[10]   THE TOPOLOGICAL EQUIVALENCE OF THE PARETO CONDITION AND THE EXISTENCE OF A DICTATOR [J].
CHICHILNISKY, G .
JOURNAL OF MATHEMATICAL ECONOMICS, 1982, 9 (03) :223-233