High throughput methodology for carbon nanomaterials discovery and optimization

被引:13
作者
Cassell, AM
Ng, HT
Delzeit, L
Ye, Q
Li, J
Han, J
Meyyappan, M
机构
[1] NASA, Ames Res Ctr, Ctr Nanotechnol, Moffett Field, CA 94035 USA
[2] ELORET Corp, Sunnyvale, CA 94087 USA
基金
美国国家航空航天局;
关键词
carbon nanotubes; heterogeneous catalysis; CVD; combinatorial materials; microarrays;
D O I
10.1016/S0926-860X(03)00279-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The application of high throughput methodology in the discovery of catalyst formulations and novel nanomaterials is expected to impact a wide range of applications. Carbon nanomaterials such as nanotubes, nanofibers, and diamond-like carbon are promising candidate materials for use in a wide variety of electrical, optical and mechanical applications. Therefore, the application of combinatorial methodologies to the discovery and optimization of carbon nanomaterials and catalyst formulations to produce them will accelerate the advancement of nanoscale science and technology. Here, we present an overview of the various combinatorial methodologies employed in the search for carbon nanotubes and related structures. It is hoped that continued innovations in high throughput methodology, especially for nanomaterials development, would be adapted to the many challenges facing nanotechnology. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:85 / 96
页数:12
相关论文
共 28 条
[1]  
AMIS EJ, 2002, MRS B, V27
[2]   COBALT-CATALYZED GROWTH OF CARBON NANOTUBES WITH SINGLE-ATOMIC-LAYERWALLS [J].
BETHUNE, DS ;
KIANG, CH ;
DEVRIES, MS ;
GORMAN, G ;
SAVOY, R ;
VAZQUEZ, J ;
BEYERS, R .
NATURE, 1993, 363 (6430) :605-607
[3]  
Cassell AM, 1999, J PHYS CHEM B, V103, P6484, DOI 10.1021/jp990957sCCC:$18.00
[4]   Carbon nanotube networks by chemical vapor deposition [J].
Cassell, AM ;
McCool, GC ;
Ng, HT ;
Koehne, JE ;
Chen, B ;
Li, J ;
Han, J ;
Meyyappan, M .
APPLIED PHYSICS LETTERS, 2003, 82 (05) :817-819
[5]   Combinatorial optimization of heterogeneous catalysts used in the growth of carbon nanotubes [J].
Cassell, AM ;
Verma, S ;
Delzeit, L ;
Meyyappan, M ;
Han, J .
LANGMUIR, 2001, 17 (02) :260-264
[6]   Experimental strategies for combinatorial and high-throughput materials development [J].
Cawse, JN .
ACCOUNTS OF CHEMICAL RESEARCH, 2001, 34 (03) :213-221
[7]   Heterogeneous single-walled carbon nanotube catalyst discovery and optimization [J].
Chen, B ;
Parker, G ;
Han, J ;
Meyyappan, M ;
Cassell, AM .
CHEMISTRY OF MATERIALS, 2002, 14 (04) :1891-1896
[8]   Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor [J].
Delzeit, L ;
McAninch, I ;
Cruden, BA ;
Hash, D ;
Chen, B ;
Han, J ;
Meyyappan, M .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (09) :6027-6033
[9]   Multiwalled carbon nanotubes by chemical vapor deposition using multilayered metal catalysts [J].
Delzeit, L ;
Nguyen, CV ;
Chen, B ;
Stevens, R ;
Cassell, A ;
Han, J ;
Meyyappan, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (22) :5629-5635
[10]   Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth [J].
Delzeit, L ;
Chen, B ;
Cassell, A ;
Stevens, R ;
Nguyen, C ;
Meyyappan, M .
CHEMICAL PHYSICS LETTERS, 2001, 348 (5-6) :368-374