A non-local algorithm for image denoising

被引:5349
作者
Buades, A [1 ]
Coll, B [1 ]
Morel, JM [1 ]
机构
[1] UIB, Dpt Matemat & Informat, Palma de Mallorca 07122, Spain
来源
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS | 2005年
关键词
D O I
10.1109/cvpr.2005.38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new measure, the method noise, to evaluate and compare the performance of digital image denoising methods. We first compute and analyze this method noise for a wide class of denoising algorithms, namely the local smoothing filters. Second, we propose a new algorithm, the non local means (NL-means), based on a non local averaging of all pixels in the image. Finally, we present some experiments comparing the NL-means algorithm and the local smoothing filters.
引用
收藏
页码:60 / 65
页数:6
相关论文
共 16 条
  • [1] IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION .2.
    ALVAREZ, L
    LIONS, PL
    MOREL, JM
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (03) : 845 - 866
  • [2] Buades A., 2004, 200415 CMLA
  • [3] Buades A., 2005, 200504 CMLA
  • [4] COIFMAN R. R., 1995, Wavelets and statistics, P125, DOI DOI 10.1007/978-1-4612-2544-7_9
  • [5] DE-NOISING BY SOFT-THRESHOLDING
    DONOHO, DL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (03) : 613 - 627
  • [6] Efros A. A., 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision, P1033, DOI 10.1109/ICCV.1999.790383
  • [7] ON GABOR CONTRIBUTION TO IMAGE-ENHANCEMENT
    LINDENBAUM, M
    FISCHER, M
    BRUCKSTEIN, A
    [J]. PATTERN RECOGNITION, 1994, 27 (01) : 1 - 8
  • [8] MEYER Y, 2002, AMS U LECT SERIES
  • [9] Ordentlich E, 2003, IEEE IMAGE PROC, P117
  • [10] Image decomposition and restoration using total variation minimization and the H-1 norm
    Osher, S
    Solé, A
    Vese, L
    [J]. MULTISCALE MODELING & SIMULATION, 2003, 1 (03) : 349 - 370