Chaos and synchronized chaos in an earthquake model

被引:81
作者
Vieira, MD [1 ]
机构
[1] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
关键词
D O I
10.1103/PhysRevLett.82.201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that chaos is present in the symmetric two-block Burridge-Knopoff model for earthquakes. This is in contrast with previous numerical studies, but in agreement with experimental results. In this system, we have found a rich dynamical behavior with an unusual route to chaos. In the three-block system, we see the appearance of synchronized chaos, showing that this concept can have potential applications in the field of seismology. [S0031-9007(98)08083-1].
引用
收藏
页码:201 / 204
页数:4
相关论文
共 26 条
[1]  
[Anonymous], LECT APPL MATH
[2]   SELF-ORGANIZED CRITICALITY [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW A, 1988, 38 (01) :364-374
[3]   KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS [J].
BENETTIN, G ;
GALGANI, L ;
STRELCYN, JM .
PHYSICAL REVIEW A, 1976, 14 (06) :2338-2345
[4]  
BURRIDGE R, 1967, B SEISMOL SOC AM, V57, P341
[5]   INTRINSIC-PROPERTIES OF A BURRIDGE-KNOPOFF MODEL OF AN EARTHQUAKE FAULT [J].
CARLSON, JM ;
LANGER, JS ;
SHAW, BE ;
TANG, C .
PHYSICAL REVIEW A, 1991, 44 (02) :884-897
[6]   PROPERTIES OF EARTHQUAKES GENERATED BY FAULT DYNAMICS [J].
CARLSON, JM ;
LANGER, JS .
PHYSICAL REVIEW LETTERS, 1989, 62 (22) :2632-2635
[7]   STRONGLY INTERMITTENT CHAOS AND SCALING IN AN EARTHQUAKE MODEL [J].
CRISANTI, A ;
JENSEN, MH ;
VULPIANI, A ;
PALADIN, G .
PHYSICAL REVIEW A, 1992, 46 (12) :R7363-R7366
[8]   CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :65-68
[9]   PREDICTING CHAOTIC TIME-SERIES [J].
FARMER, JD ;
SIDOROWICH, JJ .
PHYSICAL REVIEW LETTERS, 1987, 59 (08) :845-848
[10]   MARGINAL STABILITY AND CHAOS IN COUPLED FAULTS MODELED BY NONLINEAR CIRCUITS [J].
FIELD, S ;
VENTURI, N ;
NORI, F .
PHYSICAL REVIEW LETTERS, 1995, 74 (01) :74-77