Uncoupling protein 3 protects aconitase against inactivation in isolated skeletal muscle mitochondria

被引:54
作者
Talbot, DA [1 ]
Brand, MD [1 ]
机构
[1] MRC, Dunn Human Nutr Unit, Cambridge CB2 2XY, England
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 2005年 / 1709卷 / 02期
基金
英国医学研究理事会;
关键词
aconitase; UCP3; superoxide; reactive oxygen species; mitochondria;
D O I
10.1016/j.bbabio.2005.07.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondrial uncoupling proteins only catalyse proton transport when they are activated. Activators include superoxide and reactive alkenals, suggesting new physiological functions for UCP2 and UCP3: their activation by superoxide when protonmotive force is high causes mild uncoupling, which lowers protonmotive force and attenuates superoxide generation by the electron transport chain. This feedback loop acts to prevent excessive mitochondrial superoxide production. Superoxide inactivates aconitase in the mitochondrial matrix, so aconitase activity provides a sensitive measure of the effects of UCPs on matrix superoxide. We find that inhibition of UCP3 in isolated skeletal muscle mitochondria by GDP decreases aconitase activity by 25% after 20 min incubation. The GDP effect is absent in skeletal muscle mitochondria from UCP3 knockout mice, showing that it is mediated by UCP3. Protection of aconitase by UCP3 in the absence of nucleotides does not require added fatty acids. The purine nucleoside diphosphates and triphosphates cause aconitase inactivation, but the monophosphates and CDP do not, consistent with the known nucleotide specificity of UCP3. The IC50 for GDP is about 100 mu M. These findings support the proposal that UCP3 attenuates endogenous radical production by the mitochondrial electron transport chain at high protonmotive force. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:150 / 156
页数:7
相关论文
共 43 条
[1]   Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production [J].
Arsenijevic, D ;
Onuma, H ;
Pecqueur, C ;
Raimbault, S ;
Manning, BS ;
Miroux, B ;
Couplan, E ;
Alves-Guerra, MC ;
Goubern, M ;
Surwit, R ;
Bouillaud, F ;
Richard, D ;
Collins, S ;
Ricquier, D .
NATURE GENETICS, 2000, 26 (04) :435-439
[2]  
BERS DM, 1994, METHOD CELL BIOL, V40, P3
[3]  
Brand MD, 2004, BIOCHEM SOC SYMP, V71, P203
[4]   Mitochondrial superoxide: Production, biological effects, and activation of uncoupling proteins [J].
Brand, MD ;
Affourtit, C ;
Esteves, TC ;
Green, K ;
Lambert, AJ ;
Miwa, S ;
Pakay, JL ;
Parker, N .
FREE RADICAL BIOLOGY AND MEDICINE, 2004, 37 (06) :755-767
[5]   Oxidative damage and phospholipid fatty acyl composition in skeletal muscle mitochondria from mice underexpressing or overexpressing uncoupling protein 3 [J].
Brand, MD ;
Pamplona, R ;
Portero-Otín, M ;
Requena, JR ;
Roebuck, SJ ;
Buckingham, JA ;
Clapham, JC ;
Cadenas, S .
BIOCHEMICAL JOURNAL, 2002, 368 :597-603
[6]   Uncoupling to survive? The role of mitochondrial inefficiency in ageing [J].
Brand, MD .
EXPERIMENTAL GERONTOLOGY, 2000, 35 (6-7) :811-820
[7]  
BRAND MD, IN PRESS CELL METABO
[8]   BOUND AND DETERMINED - A COMPUTER-PROGRAM FOR MAKING BUFFERS OF DEFINED ION CONCENTRATIONS [J].
BROOKS, SPJ ;
STOREY, KB .
ANALYTICAL BIOCHEMISTRY, 1992, 201 (01) :119-126
[9]   Effects of magnesium and nucleotides on the proton conductance of rat skeletal-muscle mitochondria [J].
Cadenas, S ;
Brand, MD .
BIOCHEMICAL JOURNAL, 2000, 348 :209-213
[10]   Brown adipose tissue: Function and physiological significance [J].
Cannon, B ;
Nedergaard, J .
PHYSIOLOGICAL REVIEWS, 2004, 84 (01) :277-359