Potassium uptake through the TOK1 K+ channel in the budding yeast

被引:38
作者
Fairman, C
Zhou, XL
Kung, C
机构
[1] Univ Wisconsin, Mol Biol Lab, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Genet, Madison, WI 53706 USA
关键词
TOK1; YKC1; K+ channel; yeast; patch clamp;
D O I
10.1007/s002329900505
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The current through TOK1 (YKC1), the outward-rectifying K+ channel in Saccharomyces cerevisiae, was amplified by expressing TOK1 from a plasmid driven by a strong constitutive promoter. TOK1 so hyper-expressed could overcome the K+ auxotrophy of a mutant missing the two K+ transporters, TRK1 and TRK2, This trk1 Delta trk2 Delta double mutant hyperexpressing the TOK1 transgene had a higher internal K+ content than one expressing the empty plasmid. We examined protoplasts of these TOK1-hyperexpressing cells under a patch clamp. Besides the expected K+ outward current activating at membrane potential (V-m) above the K+ equilibrium potential (EK+), a small inward current was consistently observed when the V-m was slightly below EK+. The inward and the outward currents are similar in their activation rates, deactivation rates, ion specificities and Ba2+ inhibition, indicating that they flow through the same channel. Thus, the yeast outwardly rectifying K+ channel can take up K+ into yeast cells, at least under certain conditions.
引用
收藏
页码:149 / 157
页数:9
相关论文
共 27 条
[1]   Voltage-gated ion channels and electrical excitability [J].
Armstrong, CM ;
Hille, B .
NEURON, 1998, 20 (03) :371-380
[2]  
BERTL A, 1993, J MEMBRANE BIOL, V132, P183
[3]   USE OF SACCHAROMYCES-CEREVISIAE FOR PATCH-CLAMP ANALYSIS OF HETEROLOGOUS MEMBRANE-PROTEINS - CHARACTERIZATION OF KAT1, AN INWARD-RECTIFYING K+ CHANNEL FROM ARABIDOPSIS-THALIANA, AND COMPARISON WITH ENDOGENEOUS YEAST CHANNELS AND CARRIERS [J].
BERTL, A ;
ANDERSON, JA ;
SLAYMAN, CL ;
GABER, RF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (07) :2701-2705
[4]   Physiological characterization of the yeast plasma membrane outward rectifying K+ channel, DUK1 (TOK1), in situ [J].
Bertl, A ;
Bihler, H ;
Reid, JD ;
Kettner, C ;
Slayman, CL .
JOURNAL OF MEMBRANE BIOLOGY, 1998, 162 (01) :67-80
[5]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[6]   Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel [J].
Fink, M ;
Duprat, F ;
Lesage, F ;
Reyes, R ;
Romey, G ;
Heurteaux, C ;
Lazdunski, M .
EMBO JOURNAL, 1996, 15 (24) :6854-6862
[7]   TRK1 ENCODES A PLASMA-MEMBRANE PROTEIN REQUIRED FOR HIGH-AFFINITY POTASSIUM-TRANSPORT IN SACCHAROMYCES-CEREVISIAE [J].
GABER, RF ;
STYLES, CA ;
FINK, GR .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (07) :2848-2859
[8]   ORK1, a potassium-selective leak channel with two pore domains cloned from Drosophila melanogaster by expression in Saccharomyces cerevisiae [J].
Goldstein, SAN ;
Price, LA ;
Rosenthal, DN ;
Pausch, MH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (23) :13256-13261
[9]   ION CHANNELS IN YEAST [J].
GUSTIN, MC ;
MARTINAC, B ;
SAIMI, Y ;
CULBERTSON, MR ;
KUNG, C .
SCIENCE, 1986, 233 (4769) :1195-1197
[10]   YEAST ESCHERICHIA-COLI SHUTTLE VECTORS WITH MULTIPLE UNIQUE RESTRICTION SITES [J].
HILL, JE ;
MYERS, AM ;
KOERNER, TJ ;
TZAGOLOFF, A .
YEAST, 1986, 2 (03) :163-167