Altered ion channels in an animal model of Charcot-Marie-Tooth disease type IA

被引:66
作者
Devaux, JJ [1 ]
Scherer, SS [1 ]
机构
[1] Univ Penn, Med Ctr, Dept Neurol, Philadelphia, PA 19104 USA
关键词
myelin; CMT; PMP22; node of Ranvier; potassium channels; axonal conduction;
D O I
10.1523/JNEUROSCI.3328-04.2005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
How demyelination and remyelination affect the function of myelinated axons is a fundamental aspect of demyelinating diseases. We examined this issue in Trembler-J mice, a genetically authentic model of a dominantly inherited demyelinating neuropathy of humans. The K+ channels Kv1.1 and Kv1.2 channels were often improperly located in the paranodal axon membrane, typically associated with improperly formed paranodes, and in unmyelinated segments between internodes. As in wild-type nerves, Trembler-J nodes contained Nav1.6, ankyrin-G, betaIV-spectrin, and KCNQ2, but, unlike wild-type nerves, they also contained Kv3.1b and Nav1.8. In unmyelinated segments bordered by myelin sheaths, these proteins were clustered in heminodes and did not appear to be diffusely localized in the unmyelinated segments themselves. Nodes and heminodes were contacted by Schwann cells processes that did not have the ultrastructural or molecular characteristics of mature microvilli. Despite the presence of Nav1.8, a tetrodotoxin-resistant sodium channel, sciatic nerve conduction was at least as sensitive to tetrodotoxin in Trembler-J nerves as in wild-type nerves. Thus, the profound reorganization of axonal ion channels and the aberrant expression of novel ion channels likely contribute to the altered conduction in Trembler-J nerves.
引用
收藏
页码:1470 / 1480
页数:11
相关论文
共 99 条
[1]   The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways [J].
Akopian, AN ;
Souslova, V ;
England, S ;
Okuse, K ;
Ogata, N ;
Ure, J ;
Smith, A ;
Kerr, BJ ;
McMahon, SB ;
Boyce, S ;
Hill, R ;
Stanfa, LC ;
Dickenson, AH ;
Wood, JN .
NATURE NEUROSCIENCE, 1999, 2 (06) :541-548
[2]   A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons [J].
Akopian, AN ;
Sivilotti, L ;
Wood, JN .
NATURE, 1996, 379 (6562) :257-262
[3]   Genetic dysmyelination alters the molecular architecture of the nodal region [J].
Arroyo, EJ ;
Xu, T ;
Grinspan, J ;
Lambert, S ;
Levinson, SR ;
Brophy, PJ ;
Peles, E ;
Scherer, SS .
JOURNAL OF NEUROSCIENCE, 2002, 22 (05) :1726-1737
[4]   Myelinating Schwann cells determine the internodal localization of Kv1.1, Kv1.2, Kvβ2, and Caspr [J].
Arroyo, EJ ;
Xu, YT ;
Zhou, L ;
Messing, A ;
Peles, E ;
Chiu, SY ;
Scherer, SS .
JOURNAL OF NEUROCYTOLOGY, 1999, 28 (4-5) :333-347
[5]  
Bennett V, 1997, SOC GEN PHY, V52, P107
[6]   βIV spectrin, a new spectrin localized at axon initial segments and nodes of ranvier in the central and peripheral nervous system [J].
Berghs, S ;
Aggujaro, D ;
Dirkx, R ;
Maksimova, E ;
Stabach, P ;
Hermel, JM ;
Zhang, JP ;
Philbrick, W ;
Slepnev, V ;
Ort, T ;
Solimena, M .
JOURNAL OF CELL BIOLOGY, 2000, 151 (05) :985-1001
[7]  
BEUCHE W, 1985, ACTA NEUROPATHOL, V60, P29
[8]   Axon-glia interactions and the domain organization of myelinated axons requires Neurexin IV/Caspr/Paranodin [J].
Bhat, MA ;
Rios, JC ;
Lu, Y ;
Garcia-Fresco, GP ;
Ching, W ;
St Martin, M ;
Li, JJ ;
Einheber, S ;
Chesler, M ;
Rosenbluth, J ;
Salzer, JL ;
Bellen, HJ .
NEURON, 2001, 30 (02) :369-383
[9]   CELLULAR AND EXTRACELLULAR COMPONENTS AT NODES OF RANVIER IN RAT WHITE-MATTER [J].
BJARTMAR, C ;
KARLSSON, B ;
HILDEBRAND, C .
BRAIN RESEARCH, 1994, 667 (01) :111-114
[10]   Compact myelin dictates the differential targeting of two sodium channel isoforms in the same axon [J].
Boiko, T ;
Rasband, MN ;
Levinson, SR ;
Caldwell, JH ;
Mandel, G ;
Trimmer, JS ;
Matthews, G .
NEURON, 2001, 30 (01) :91-104