Forward decomposition algorithms for optimal control of a class of hybrid systems

被引:50
作者
Cho, YC [1 ]
Cassandras, CG
Pepyne, DL
机构
[1] Seoul Natl Univ, Sch Elect Engn, Seoul 151742, South Korea
[2] Boston Univ, Dept Mfg Engn, Boston, MA 02215 USA
[3] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
hybrid system; optimal control; non-convex optimization;
D O I
10.1002/rnc.595
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers optimal control problems for a class of hybrid systems motivated by the structure of manufacturing environments that integrate process and operations control. We derive new necessary and sufficient conditions that allow us to determine the structure of the optimal sample path and hence decompose a large non-convex, non-differentiable problem into a set of smaller convex, constrained optimization problems. Using these conditions, we develop two efficient, low-complexity, scalable algorithms for explicitly determining the optimal controls. Several numerical examples are included to illustrate the efficacy of the proposed algorithms. Copyright (C) 2001 John Wiley & Sons, Ltd.
引用
收藏
页码:497 / 513
页数:17
相关论文
共 14 条
[1]  
ALUR R, 1996, HYBRID SYSTEMS
[2]  
ANTSAKLIS P, 1998, HYBRID SYSTEMS 5
[3]   A unified framework for hybrid control: Model and optimal control theory [J].
Branicky, MS ;
Borkar, VS ;
Mitter, SK .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (01) :31-45
[4]  
Cassandras C. G., 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), P450, DOI 10.1109/CDC.1999.832819
[5]  
Cassandras CG, 1998, IEEE DECIS CONTR P, P7, DOI 10.1109/CDC.1998.760581
[6]  
CASSANDRAS CG, 2001, IEEE T AUTOMATIC CON, V46
[7]  
Cassandras Christos., 1993, Discrete Event Systems: Modeling and Performance Analysis
[8]  
Cho YC, 2000, IEEE DECIS CONTR P, P540, DOI 10.1109/CDC.2000.912820
[9]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[10]  
Gokbayrak K, 2000, IEEE DECIS CONTR P, P1816, DOI 10.1109/CDC.2000.912126