Selective stimulation of VEGFR-1 prevents oxygen-induced retinal vascular degeneration in retinopathy of prematurity

被引:111
作者
Shih, SC
Ju, MH
Liu, N
Smith, LEH
机构
[1] Childrens Hosp, Dept Ophthalmol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Ophthalmol, Boston, MA 02115 USA
关键词
D O I
10.1172/JCI200317808
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Oxygen administration to immature neonates suppresses VEGF-A expression in the retina, resulting in the catastrophic vessel loss that initiates retinopathy of prematurity. To investigate the mechanisms responsible for survival of blood vessels in the developing retina, we characterized two VEGF-A receptors, VEGF receptor-1 (VEGFR-1, also known as Flt-1) and VEGF receptor-2 (VEGFR-2, also known as Flk-1). Surprisingly, these two VEGF-A receptors differed markedly during normal retinal development in mice. At 5 days postpartum (PS), VEGFR-1 protein was colocalized with retinal vessels, whereas VEGFR-2 was detected only in the neural retina. Real-time RT-PCR identified a 60-fold induction of VEGFR-1 mRNA in retina from P3 (early vascularization) to P26 (fully vascularized), and no significant change in VEGFR-2 mRNA expression. Placental growth factor-1 (PlGF-1), which exclusively binds VEGFR-1, decreased hyperoxia-induced retinal vaso-obliteration from 22.2% to S. 1%, whereas VEGF-E, which exclusively binds VEGFR-2, had no effect on blood vessel survival. Importantly, under the same conditions, PlGF-1 did not increase vasoproliferation during (a) normal vessel growth, (b) revascularization following hyperoxia-induced ischemia, or (c) the vasoproliferative phase, indicating a selective function supporting blood vessel survival. We conclude that VEGFR-1 is critical in maintaining the vasculature of the neonatal retina, and that activation of VEGFR-1 by PlGF-1 is a selective strategy for preventing oxygen-induced retinal ischemia without provoking retinal neovascularization.
引用
收藏
页码:50 / 57
页数:8
相关论文
共 26 条
[1]  
Adini A, 2002, CANCER RES, V62, P2749
[2]   SUPPRESSION OF RETINAL NEOVASCULARIZATION IN-VIVO BY INHIBITION OF VASCULAR ENDOTHELIAL GROWTH-FACTOR (VEGF) USING SOLUBLE VEGF-RECEPTOR CHIMERIC PROTEINS [J].
AIELLO, LP ;
PIERCE, EA ;
FOLEY, ED ;
TAKAGI, H ;
CHEN, H ;
RIDDLE, L ;
FERRARA, N ;
KING, GL ;
SMITH, LEH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (23) :10457-10461
[3]   VASCULAR ENDOTHELIAL GROWTH-FACTOR ACTS AS A SURVIVAL FACTOR FOR NEWLY FORMED RETINAL-VESSELS AND HAS IMPLICATIONS FOR RETINOPATHY OF PREMATURITY [J].
ALON, T ;
HEMO, I ;
ITIN, A ;
PEER, J ;
STONE, J ;
KESHET, E .
NATURE MEDICINE, 1995, 1 (10) :1024-1028
[4]   RETINOPATHY OF PREMATURITY [J].
BOSSI, E ;
KOERNER, F .
INTENSIVE CARE MEDICINE, 1995, 21 (03) :241-246
[5]   Inhibition of the mammary carcinoma angiogenic switch in C3(1)/SV40 transgenic mice by a mutated form of human endostatin [J].
Calvo, A ;
Yokoyama, Y ;
Smith, LE ;
Ali, I ;
Shih, SC ;
Feldman, AL ;
Libutti, SK ;
Sundaram, R ;
Green, JE .
INTERNATIONAL JOURNAL OF CANCER, 2002, 101 (03) :224-234
[6]   Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions [J].
Carmeliet, P ;
Moons, L ;
Luttun, A ;
Vincenti, V ;
Compernolle, V ;
De Mol, M ;
Wu, Y ;
Bon, F ;
Devy, L ;
Beck, H ;
Scholz, D ;
Acker, T ;
DiPalma, T ;
Dewerchin, M ;
Noel, A ;
Stalmans, I ;
Barra, A ;
Blacher, S ;
Vandendriessche, T ;
Ponten, A ;
Eriksson, U ;
Plate, KH ;
Foidart, JM ;
Schaper, W ;
Charnock-Jones, DS ;
Hicklin, DJ ;
Herbert, JM ;
Collen, D ;
Persico, MG .
NATURE MEDICINE, 2001, 7 (05) :575-583
[7]   MICROSCOPIC VISUALIZATION OF THE RETINA BY ANGIOGRAPHY WITH HIGH-MOLECULAR-WEIGHT FLUORESCEIN-LABELED DEXTRANS IN THE MOUSE [J].
DAMATO, R ;
WESLOWSKI, E ;
SMITH, LEH .
MICROVASCULAR RESEARCH, 1993, 46 (02) :135-142
[8]  
GIBSON DL, 1990, PEDIATRICS, V86, P405
[9]   Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice [J].
Hiratsuka, S ;
Minowa, O ;
Kuno, J ;
Noda, T ;
Shibuya, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (16) :9349-9354
[10]  
Hiratsuka S, 2001, CANCER RES, V61, P1207