Vanadium-containing ordered mesoporous silicas: Synthesis, characterization and catalytic activity in the hydroxylation of biphenyl

被引:50
作者
George, J [1 ]
Shylesh, S [1 ]
Singh, AP [1 ]
机构
[1] Natl Chem Lab, Catalysis Div, Pune 411008, Maharashtra, India
关键词
mesoporous molecular sieves; MCM-41; vanadium; biphenyl; heterogenity;
D O I
10.1016/j.apcata.2005.05.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A series of vanadium-containing ordered mesoporous MCM-41 materials (V-OMS) have been synthesized by direct hydrothermal (VMCM-41) and grafting (V/MCM-41) methods using hexadecyl trimethyl ammonium bromide (HDTMABr) as the structure-directing agent. The physico-chemical properties of the vanadium-containing materials were characterized in detail by ICP-OES, XRD, Fr-IR, N-2 adsorption-desorption, DRUV-VIS, TPR, XPS and SEM techniques. The redox performances of the vanadium-modified mesoporous materials were tested in the hydroxylation of biphenyl using aqueous H2O2 (30 wt.%) as oxidant. For a better exploitation of the catalytic activity, the reaction parameters are optimized in terms of temperature, solvent, oxidant, etc. A comparison between the catalytic activity values of the vanadium-containing mesoporous materials prepared by the two routes shows that vanadium-substituted (V-MCM-41) materials had increased activity and improved selectivity for mono hydroxyl products in the hydroxylation reaction of biphenyl compared to the V/MCM-41 catalysts. The heterogenity of the catalysts was verified by a series of leaching studies. Both the catalysts enhance the leaching of active vanadia species during the reaction; among them, V/MCM-41 shows the least heterogenity. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:148 / 158
页数:11
相关论文
共 43 条
[1]   The influence of synthesis parameters on the vanadium content and pore size of [V]-MCM-41 materials [J].
Arnold, ABJ ;
Niederer, JPM ;
Niessen, TEW ;
Hölderich, WF .
MICROPOROUS AND MESOPOROUS MATERIALS, 1999, 28 (03) :353-360
[2]   MCM-48-supported vanadium oxide catalysts, prepared by the molecular designed dispersion of VO(acac)2:: A detailed study of the highly reactive MCM-48 surface and the structure and activity of the deposited VOx [J].
Baltes, M ;
Cassiers, K ;
Van Der Voort, P ;
Weckhuysen, BM ;
Schoonheydt, RA ;
Vansant, EF .
JOURNAL OF CATALYSIS, 2001, 197 (01) :160-171
[3]   A NEW FAMILY OF MESOPOROUS MOLECULAR-SIEVES PREPARED WITH LIQUID-CRYSTAL TEMPLATES [J].
BECK, JS ;
VARTULI, JC ;
ROTH, WJ ;
LEONOWICZ, ME ;
KRESGE, CT ;
SCHMITT, KD ;
CHU, CTW ;
OLSON, DH ;
SHEPPARD, EW ;
MCCULLEN, SB ;
HIGGINS, JB ;
SCHLENKER, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (27) :10834-10843
[4]   Structure and catalytic properties of VOx/MCM materials for the partial oxidation of methane to formaldehyde [J].
Berndt, H ;
Martin, A ;
Brückner, A ;
Schreier, E ;
Müller, D ;
Kosslick, H ;
Wolf, GU ;
Lücke, B .
JOURNAL OF CATALYSIS, 2000, 191 (02) :384-400
[5]  
CARWALHO WA, 1997, ZEOLITES, V18, P408
[6]   Hydrothermal synthesis and characterization of the vanadium-containing zeolite beta [J].
Chien, SH ;
Ho, JC ;
Mon, SS .
ZEOLITES, 1997, 18 (2-3) :182-187
[7]   Hydrothermal synthesis of vanadium oxides [J].
Chirayil, T ;
Zavalij, PY ;
Whittingham, MS .
CHEMISTRY OF MATERIALS, 1998, 10 (10) :2629-2640
[8]   From microporous to mesoporous molecular sieve materials and their use in catalysis [J].
Corma, A .
CHEMICAL REVIEWS, 1997, 97 (06) :2373-2419
[9]   Titania-silica: A model binary oxide catalyst system [J].
Davis, RJ ;
Liu, ZF .
CHEMISTRY OF MATERIALS, 1997, 9 (11) :2311-2324
[10]   Mixed-valence vanadium oxides studied by XPS [J].
Demeter, M ;
Neumann, M ;
Reichelt, W .
SURFACE SCIENCE, 2000, 454 (01) :41-44