Episodic rewetting enhances carbon and nitrogen release from chaparral soils

被引:325
作者
Miller, AE
Schimel, JP
Meixner, T
Sickman, JO
Melack, JM
机构
[1] Univ Calif Santa Barbara, Inst Computat Earth Syst Sci, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA
[3] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA
[4] Univ Florida, Dept Soil & Water Sci, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
soil respiration; litter addition; nitrification; nitrate; DON; DOC;
D O I
10.1016/j.soilbio.2005.03.021
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
The short-term pulse of carbon (C) and nitrogen (N) mineralization that accompanies the wetting of dry soils may dominate annual C and N production in many and and semi-arid environments characterized by seasonal transitions. We used a laboratory incubation to evaluate the impact of short-term fluctuations in soil moisture on long-term carbon and nitrogen dynamics, and the degree to which rewetting enhances C and N release. Following repeated drying and rewetting of chaparral soils, cumulative CO2 release in rewet soils was 2.2-3.7 times greater than from soils maintained at equivalent mean soil moisture and represented 12-18% of the total soil C pool. Rewetting frequency did not affect cumulative CO2 release but did enhance N turnover, and net N mineralization and nitrification increased with rewetting in spite of significant reductions in nitrification potential. Litter addition decreased inorganic N release but enhanced dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) from dry soils, indicating the potential importance of a litter-derived pulse to short-term nutrient dynamics. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2195 / 2204
页数:10
相关论文
共 46 条
[1]   Non-biomass soil organic N -: the substrate for N mineralization flushes following soil drying-rewetting and for organic N rendered CaCl2-extractable upon soil drying [J].
Appel, T .
SOIL BIOLOGY & BIOCHEMISTRY, 1998, 30 (10-11) :1445-1456
[2]   SPECIFIC-INHIBITION OF NITRITE OXIDATION BY CHLORATE AND ITS USE IN ASSESSING NITRIFICATION IN SOILS AND SEDIMENTS [J].
BELSER, LW ;
MAYS, EL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1980, 39 (03) :505-510
[3]  
BIRCH H. F., 1958, Plant and Soil, V10, P9, DOI 10.1007/BF01343734
[4]   Drying and wetting effects on carbon dioxide release from organic horizons [J].
Borken, W ;
Davidson, EA ;
Savage, K ;
Gaudinski, J ;
Trumbore, SE .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2003, 67 (06) :1888-1896
[5]   REDUCTION IN MICROBIAL ACTIVITY IN BIRCH LITTER DUE TO DRYING AND REWETTING EVENTS [J].
CLEIN, JS ;
SCHIMEL, JP .
SOIL BIOLOGY & BIOCHEMISTRY, 1994, 26 (03) :403-406
[6]   PROKARYOTIC OSMOREGULATION - GENETICS AND PHYSIOLOGY [J].
CSONKA, LN ;
HANSON, AD .
ANNUAL REVIEW OF MICROBIOLOGY, 1991, 45 :569-606
[7]   REPEATED WET-DRY CYCLES DO NOT ACCELERATE THE MINERALIZATION OF ORGANIC C INVOLVED IN THE MACRO-AGGREGATION OF A SANDY LOAM SOIL [J].
DEGENS, BP ;
SPARLING, GP .
PLANT AND SOIL, 1995, 175 (02) :197-203
[8]   Influence of dry-wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics [J].
Denef, K ;
Six, J ;
Bossuyt, H ;
Frey, SD ;
Elliott, ET ;
Merckx, R ;
Paustian, K .
SOIL BIOLOGY & BIOCHEMISTRY, 2001, 33 (12-13) :1599-1611
[9]   Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures and moistures [J].
Devêvre, OC ;
Horwáth, WR .
SOIL BIOLOGY & BIOCHEMISTRY, 2000, 32 (11-12) :1773-1785
[10]  
Doyle A, 2004, SOIL SCI SOC AM J, V68, P669, DOI 10.2136/sssaj2004.0669