Universal finite-size scaling amplitudes in anisotropic scaling

被引:29
作者
Henkel, M
Schollwöck, U
机构
[1] Univ Nancy 1, Phys Mat Lab, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Munich, Sekt Phys, D-80333 Munich, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 16期
关键词
D O I
10.1088/0305-4470/34/16/301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Phenomenological scaling arguments suggest the existence of universal amplitudes in the finite-size scaling of certain correlation lengths in strongly anisotropic or dynamical phase transitions. For equilibrium systems, provided that translation invariance and hyperscaling are valid, the Privman-Fisher scaling form of isotropic equilibrium phase transitions is readily generalized. For non-equilibrium systems, universality: is shown analytically for directed percolation and is tested numerically in the annihilation-coagulation model and in the pair contact process with diffusion. In these models, for both periodic and free boundary conditions, the universality of the finite-size scaling amplitude of the leading relaxation time is checked. Amplitude universality reveals strong transient effects along the active-inactive transition line in the pair contact process.
引用
收藏
页码:3333 / 3350
页数:18
相关论文
共 74 条
[1]   SURFACE EXPONENTS OF THE QUANTUM XXZ, ASHKIN-TELLER AND POTTS MODELS [J].
ALCARAZ, FC ;
BARBER, MN ;
BATCHELOR, MT ;
BAXTER, RJ ;
QUISPEL, GRW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (18) :6397-6409
[2]   CONFORMAL-INVARIANCE, THE XXZ CHAIN AND THE OPERATOR CONTENT OF TWO-DIMENSIONAL CRITICAL SYSTEMS [J].
ALCARAZ, FC ;
BARBER, MN ;
BATCHELOR, MT .
ANNALS OF PHYSICS, 1988, 182 (02) :280-343
[3]   REACTION-DIFFUSION PROCESSES, CRITICAL-DYNAMICS, AND QUANTUM CHAINS [J].
ALCARAZ, FC ;
DROZ, M ;
HENKEL, M ;
RITTENBERG, V .
ANNALS OF PHYSICS, 1994, 230 (02) :250-302
[4]   Universality of a class of annihilation coagulation models [J].
Balboni, D ;
Rey, PA ;
Droz, M .
PHYSICAL REVIEW E, 1995, 52 (06) :6220-6226
[5]   Comment on "Solution of classical stochastic one-dimensional many-body systems" - Bares and Mobilia reply [J].
Bares, PA ;
Mobilia, M .
PHYSICAL REVIEW LETTERS, 2000, 85 (04) :893-893
[6]   Solution of classical stochastic one-dimensional many-body systems [J].
Bares, PA ;
Mobilia, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (25) :5214-5217
[7]   RENORMALIZED FIELD-THEORY OF CRITICAL DYNAMICS [J].
BAUSCH, R ;
JANSSEN, HK ;
WAGNER, H .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1976, 24 (01) :113-127
[8]   FINITE-SIZE EFFECTS AT CRITICAL-POINTS WITH ANISOTROPIC CORRELATIONS - PHENOMENOLOGICAL SCALING THEORY AND MONTE-CARLO SIMULATIONS [J].
BINDER, K ;
WANG, JS .
JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (1-2) :87-126
[9]   DEVILS STAIRS AND THE COMMENSURATE-COMMENSURATE TRANSITIONS IN CESB [J].
BOEHM, JV ;
BAK, P .
PHYSICAL REVIEW LETTERS, 1979, 42 (02) :122-125
[10]  
Bulirsch R., 1964, Numer. Math, V6, P413, DOI [10.1007/BF01386092, DOI 10.1007/BF01386092]