Regulation of metabolic networks: understanding metabolic complexity in the systems biology era

被引:100
作者
Sweetlove, LJ
Fernie, AR
机构
[1] Univ Oxford, Dept Plant Sci, Oxford OX1 3RB, England
[2] Max Planck Inst Mol Pflanzenphysiol, Dept Lothar Willmitzer, D-14476 Golm, Germany
关键词
flux; integrative genomics; metabolism; metabolon; network; scale-free; system;
D O I
10.1111/j.1469-8137.2005.01513.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Metabolism is one of the best recognised networks within biological systems, but our understanding of metabolic regulation has been limited by a failure to consider regulation within the context of the whole network. With recent advances in theoretical aspects of network thinking and a postgenomic landscape in which our ability to quantify molecular changes at a systems level is unsurpassed, the time is ripe for the development of a new level of understanding of the regulation of plant metabolic networks. Theoretical advances such as the formal description of 'scale-free' networks have provided explanations for network behaviour ( such as robustness). In parallel, the appreciation of the importance of new levels of the metabolic regulatory hierarchy ( such as protein-protein interaction) and the continuing development of global profiling technologies is generating a system-wide molecular data set of increasing resolution. In this review we will argue that the integration of these different aspects of metabolic research will bring about a step change in our understanding of the regulation of metabolic networks in plants.
引用
收藏
页码:9 / 23
页数:15
相关论文
共 130 条
[1]   Colocalization of L-phenylalanine ammonia-lyase and cinnarnate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis [J].
Achnine, L ;
Blancaflor, EB ;
Rasmussen, S ;
Dixon, RA .
PLANT CELL, 2004, 16 (11) :3098-3109
[2]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[3]   Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase [J].
Agius, F ;
González-Lamothe, R ;
Caballero, JL ;
Muñoz-Blanco, J ;
Botella, MA ;
Valpuesta, V .
NATURE BIOTECHNOLOGY, 2003, 21 (02) :177-181
[4]   Error and attack tolerance of complex networks [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 2000, 406 (6794) :378-382
[5]  
[Anonymous], 1976, BIOCH SYSTEMS ANAL S
[6]   The metabolic world of Escherichia coli is not small [J].
Arita, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (06) :1543-1547
[7]   A test case of correlation metric construction of a reaction pathway from measurements [J].
Arkin, A ;
Shen, PD ;
Ross, J .
SCIENCE, 1997, 277 (5330) :1275-1279
[8]   Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains [J].
Askenazi, M ;
Driggers, EM ;
Holtzman, DA ;
Norman, TC ;
Iverson, S ;
Zimmer, DP ;
Boers, ME ;
Blomquist, PR ;
Martinez, EJ ;
Monreal, AW ;
Feibelman, TP ;
Mayorga, ME ;
Maxon, ME ;
Sykes, K ;
Tobin, JV ;
Cordero, E ;
Salama, SR ;
Trueheart, J ;
Royer, JC ;
Madden, KT .
NATURE BIOTECHNOLOGY, 2003, 21 (02) :150-156
[9]   Posttranscription initiation control of tryptophan metabolism in Bacillus subtilis by the trp RNA-binding attenuation protein (TRAP), anti-TRAP, and RNA structure [J].
Babitzke, P ;
Gollnick, P .
JOURNAL OF BACTERIOLOGY, 2001, 183 (20) :5795-5802
[10]   Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria [J].
Balmer, Y ;
Vensel, WH ;
Tanaka, CK ;
Hurkman, WJ ;
Gelhaye, E ;
Rouhier, N ;
Jacquot, JP ;
Manieri, W ;
Schüurmann, P ;
Droux, M ;
Buchanan, BB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (08) :2642-2647