Lysine residues direct the chlorination of tyrosines in YXXK motifs of apolipoprotein A-I when hypochlorous acid oxidizes high density lipoprotein

被引:113
作者
Bergt, C
Fu, XY
Huq, NP
Kao, J
Heinecke, JW
机构
[1] Univ Washington, Div Metab Endocrinol & Nutr, Dept Med, Seattle, WA 98195 USA
[2] Washington Univ, Dept Chem, St Louis, MO 63110 USA
关键词
D O I
10.1074/jbc.M309046200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oxidized lipoproteins may play an important role in the pathogenesis of atherosclerosis. Elevated levels of 3-chlorotyrosine, a specific end product of the reaction between hypochlorous acid (HOCl) and tyrosine residues of proteins, have been detected in atherosclerotic tissue. Thus, HOCl generated by the phagocyte enzyme myeloperoxidase represents one pathway for protein oxidation in humans. One important target of the myeloperoxidase pathway may be high density lipoprotein (HDL), which mobilizes cholesterol from artery wall cells. To determine whether activated phagocytes preferentially chlorinate specific sites in HDL, we used tandem mass spectrometry (MS/MS) to analyze apolipoprotein A-I that had been oxidized by HOCl. The major site of chlorination was a single tyrosine residue located in one of the protein's YXXK motifs ( where X represents a nonreactive amino acid). To investigate the mechanism of chlorination, we exposed synthetic peptides to HOCl. The peptides encompassed the amino acid sequences YKXXY, YXXKY, or YXXXY. MS/MS analysis demonstrated that chlorination of tyrosine in the peptides that contained lysine was regioselective and occurred in high yield if the substrate was KXXY or YXXK. NMR and MS analyses revealed that the N-epsilon amino group of lysine was initially chlorinated, which suggests that chloramine formation is the first step in tyrosine chlorination. Molecular modeling of the YXXK motif in apolipoprotein A-I demonstrated that these tyrosine and lysine residues are adjacent on the same face of an amphipathic alpha-helix. Our observations suggest that HOCl selectively targets tyrosine residues that are suitably juxtaposed to primary amino groups in proteins. This mechanism might enable phagocytes to efficiently damage proteins when they destroy microbial proteins during infection or damage host tissue during inflammation.
引用
收藏
页码:7856 / 7866
页数:11
相关论文
共 65 条
[1]   BIOLOGICAL REACTIVITY OF HYPOCHLOROUS ACID - IMPLICATIONS FOR MICROBICIDAL MECHANISMS OF LEUKOCYTE MYELOPEROXIDASE [J].
ALBRICH, JM ;
MCCARTHY, CA ;
HURST, JK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1981, 78 (01) :210-214
[2]   The myeloperoxidase system of human phagocytes generates Nε-(carboxymethyl)lysine on proteins:: a mechanism for producing advances glycation end products at sites of inflammation [J].
Anderson, MM ;
Requena, JR ;
Crowley, JR ;
Thorpe, SR ;
Heinecke, JW .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (01) :103-113
[3]  
Aratani Y, 1999, INFECT IMMUN, V67, P1828
[4]   Reagent or myeloperoxidase-generated hypochlorite affects discrete regions in lipid-free and lipid-associated human apolipoprotein A-1 [J].
Bergt, C ;
Oettl, K ;
Keller, W ;
Andreae, F ;
Leis, HJ ;
Malle, E ;
Sattler, WG .
BIOCHEMICAL JOURNAL, 2000, 346 (02) :345-354
[5]   Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation [J].
Borhani, DW ;
Rogers, DP ;
Engler, JA ;
Brouillette, CG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (23) :12291-12296
[6]   Structural models of human apolipoprotein A-I: a critical analysis and review [J].
Brouillette, CG ;
Anantharamaiah, GM ;
Engler, JA ;
Borhani, DW .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2001, 1531 (1-2) :4-46
[7]   Vitamin C protects against and reverses specific hypochlorous acid- and chloramine-dependent modifications of low-density lipoprotein [J].
Carr, AC ;
Tijerina, T ;
Frei, B .
BIOCHEMICAL JOURNAL, 2000, 346 (02) :491-499
[8]   Comparison of mono- and dichlorinated tyrosines with carbonyls for detection of hypochlorous acid modified proteins [J].
Chapman, ALP ;
Senthilmohan, R ;
Winterbourn, CC ;
Kettle, AJ .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2000, 377 (01) :95-100
[9]   Chlorination of bacterial and neutrophil proteins during phagocytosis and killing of Staphylococcus aureus [J].
Chapman, ALP ;
Hampton, MB ;
Senthilmohan, R ;
Winterbourn, CC ;
Kettle, AJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (12) :9757-9762
[10]   MYELOPEROXIDASE, A CATALYST FOR LIPOPROTEIN OXIDATION, IS EXPRESSED IN HUMAN ATHEROSCLEROTIC LESIONS [J].
DAUGHERTY, A ;
DUNN, JL ;
RATERI, DL ;
HEINECKE, JW .
JOURNAL OF CLINICAL INVESTIGATION, 1994, 94 (01) :437-444