Wavelet-Based Energy Features for Glaucomatous Image Classification

被引:191
作者
Dua, Sumeet [1 ]
Acharya, U. Rajendra [2 ]
Chowriappa, Pradeep [1 ]
Sree, S. Vinitha [3 ]
机构
[1] Louisiana Tech Univ, Comp Sci Program, Ruston, LA 71272 USA
[2] Ngee Ann Polytech, Dept Elect & Commun Engn, Singapore 599489, Singapore
[3] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
来源
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE | 2012年 / 16卷 / 01期
关键词
Biomedical optical imaging; data mining; feature extraction; glaucoma; image texture; wavelet transforms; AUTOMATED DIAGNOSIS;
D O I
10.1109/TITB.2011.2176540
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Texture features within images are actively pursued for accurate and efficient glaucoma classification. Energy distribution over wavelet subbands is applied to find these important texture features. In this paper, we investigate the discriminatory potential of wavelet features obtained from the daubechies (db3), symlets (sym3), and biorthogonal (bio3.3, bio3.5, and bio3.7) wavelet filters. We propose a novel technique to extract energy signatures obtained using 2-D discrete wavelet transform, and subject these signatures to different feature ranking and feature selection strategies. We have gauged the effectiveness of the resultant ranked and selected subsets of features using a support vector machine, sequential minimal optimization, random forest, and naive Bayes classification strategies. We observed an accuracy of around 93% using tenfold cross validations to demonstrate the effectiveness of these methods.
引用
收藏
页码:80 / 87
页数:8
相关论文
共 31 条
[1]   Automated Diagnosis of Glaucoma Using Texture and Higher Order Spectra Features [J].
Acharya, U. Rajendra ;
Dua, Sumeet ;
Du, Xian ;
Sree, Vinitha S. ;
Chua, Chua Kuang .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2011, 15 (03) :449-455
[2]  
[Anonymous], 2006, Digital Image Processing
[3]  
[Anonymous], 2002, Data mining: Introductory and advanced topics
[4]   Texture classification using wavelet transform [J].
Arivazhagan, S ;
Ganesan, L .
PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) :1513-1521
[5]   Clinical Evaluation of the Proper Orthogonal Decomposition Framework for Detecting Glaucomatous Changes in Human Subjects [J].
Balasubramanian, Madhusudhanan ;
Bowd, Christopher ;
Weinreb, Robert N. ;
Vizzeri, Gianmarco ;
Alencar, Luciana M. ;
Sample, Pamela A. ;
O'Leary, Neil ;
Zangwill, Linda M. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (01) :264-271
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]   Structural and functional imaging of the retina: new ways to diagnose and assess retinal disease [J].
Brown, Brian .
CLINICAL AND EXPERIMENTAL OPTOMETRY, 2008, 91 (06) :504-514
[8]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[9]  
Daubechies I., 1992, Ten lectures on wavelets, DOI DOI 10.1137/1.9781611970104
[10]  
Dua S., 2011, Computational analysis of the human eye with applications, DOI [10.1142/8074, DOI 10.1142/8074]