Metabolite profiling of chalcones and flavanones in tomato fruit

被引:37
作者
Iijima, Yoko [1 ]
Suda, Kunihiro [1 ]
Suzuki, Tatsuya [1 ]
Aoki, Koh [1 ]
Shibata, Daisuke [1 ]
机构
[1] Kazusa DNA Res Inst, Kazusa Kamatari, Kisarazu 2920818, Japan
来源
JOURNAL OF THE JAPANESE SOCIETY FOR HORTICULTURAL SCIENCE | 2008年 / 77卷 / 01期
关键词
chalcone; eriodictyol; flavanone; LC-FTICR-MS; Solanum lycopersicum;
D O I
10.2503/jjshs1.77.94
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Tomato (Solanum lycopersicum) is one of a group of plants that accumulate chalcones and flavanones. However, the molecular diversity of chalcones, flavanones, and their conjugate metabolites has not been investigated intensively. Here, we report the profiling of chalcones and flavanones in fruits of the dwarf tomato cultivar MicroTom using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR-MS). We identified eriodictyol chalcone and eriodictyol aglycones, along with naringenin chalcone and naringenin aglycones. To our knowledge, this is the first report that demonstrates the presence of eriodictyol chalcone and eriodictyol in tomato. We detected 26 conjugate metabolites of chalcones and flavanones. Chemical information obtained simultaneously by LC-FTICR-MS, including m/z values, MS/MS spectra, UV absorption spectra, and retention times, facilitated the elucidation of molecular formulas and conjugate structures of the metabolites. Eriodictyol chalcone and eriodictyol conjugates had the same modification patterns seen in naringenin chalcone and naringenin conjugates. Chalcones and flavanones were much more abundant in tomato fruit peel than flesh. Accumulation profiles during ripening were classified into three groups. The first group included metabolites that showed the highest accumulation levels at the breaker stage, and then decreased during ripening. The second group included metabolites that accumulated to the highest levels at the turning stage, and then decreased at the red stage. The third group included metabolites that accumulated gradually during ripening, and showed the highest accumulation levels at the red stage. These accumulation profiles were mapped onto a putative modification pathway deduced from conjugate structures. Mapping revealed that the conjugate metabolites upstream of this pathway accumulated earlier, and those downstream accumulated later during ripening. This result demonstrated that chalcones and flavanones undergo sequential modification as ripening progresses.
引用
收藏
页码:94 / 102
页数:9
相关论文
共 25 条
[1]   High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1 [J].
Bovy, A ;
de Vos, R ;
Kemper, M ;
Schijlen, E ;
Pertejo, MA ;
Muir, S ;
Collins, G ;
Robinson, S ;
Verhoeyen, M ;
Hughes, S ;
Santos-Buelga, C ;
van Tunen, A .
PLANT CELL, 2002, 14 (10) :2509-2526
[2]   Isolation and characterization of a flavonoid 3′-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida [J].
Brugliera, F ;
Barri-Rewell, G ;
Holton, TA ;
Mason, JG .
PLANT JOURNAL, 1999, 19 (04) :441-451
[3]   The biosynthesis of monolignols: a "metabolic grid", or independent pathways to guaiacyl and syringyl units? [J].
Dixon, RA ;
Chen, F ;
Guo, DJ ;
Parvathi, K .
PHYTOCHEMISTRY, 2001, 57 (07) :1069-1084
[4]   Evaluation of the total peroxyl radical-scavenging capacity of flavonoids:: Structure-activity relationships [J].
Dugas, AJ ;
Castañeda-Acosta, J ;
Bonin, GC ;
Price, KL ;
Fischer, NH ;
Winston, GW .
JOURNAL OF NATURAL PRODUCTS, 2000, 63 (03) :327-331
[5]   Rewriting the lignin roadmap [J].
Humphreys, JM ;
Chapple, C .
CURRENT OPINION IN PLANT BIOLOGY, 2002, 5 (03) :224-229
[6]  
JOHNS S. R., 1965, TETRAHEDRON LETT, V24, P1987
[7]   Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits [J].
Le Gall, G ;
DuPont, MS ;
Mellon, FA ;
Davis, AL ;
Collins, GJ ;
Verhoeyen, ME ;
Colquhoun, IJ .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2003, 51 (09) :2438-2446
[8]   A liquid chromatography-mass spectrometry-based metabolome database for tomato [J].
Moco, Sofia ;
Bino, Raoul J. ;
Vorst, Oscar ;
Verhoeven, Harrie A. ;
de Groot, Joost ;
van Beek, Teris A. ;
Vervoort, Jacques ;
de Vos, C. H. Ric .
PLANT PHYSIOLOGY, 2006, 141 (04) :1205-1218
[9]   Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols [J].
Muir, SR ;
Collins, GJ ;
Robinson, S ;
Hughes, S ;
Bovy, A ;
De Vos, CHR ;
van Tunen, AJ ;
Verhoeyen, ME .
NATURE BIOTECHNOLOGY, 2001, 19 (05) :470-474
[10]   Arabidopsis CYP98A3 mediating aromatic 3-hydroxylation. Developmental regulation of the gene, and expression in yeast [J].
Nair, RB ;
Xia, Q ;
Kartha, CJ ;
Kurylo, E ;
Hirji, RN ;
Datla, R ;
Selvaraj, G .
PLANT PHYSIOLOGY, 2002, 130 (01) :210-220