Positive selection in alternatively spliced exons of human genes

被引:20
作者
Ramensky, Vasily E. [1 ]
Nurtdinov, Ramil N. [2 ]
Neverov, Alexei D. [3 ,4 ]
Mironov, Andrei A. [2 ,3 ]
Gelfand, Mikhail S. [2 ,5 ]
机构
[1] Russian Acad Sci, Bioinformat & Syst Biol Lab, Engelhardt Inst Mol Biol, Moscow 119991, Russia
[2] Moscow MV Lomonosov State Univ, Dept Bioengn & Bioinformat, Moscow 119992, Russia
[3] State Sci Ctr GosNIIGenet, Moscow 117545, Russia
[4] Cent Res Inst Epidemiol, Ctr Mol Diagnost, Moscow 111123, Russia
[5] Russian Acad Sci, Inst Informat Transmiss Problems, Res & Training Ctr Bioinformat, Moscow 127994, Russia
关键词
D O I
10.1016/j.ajhg.2008.05.017
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Alternative splicing is a well-recognized mechanism of accelerated genome evolution. We have studied single-nucleotide polymorphisms and human-chimpanzee divergence in the exons of 6672 alternatively spliced human genes, with the aim of understanding the forces driving the evolution of alternatively spliced sequences. Here, we show that alternatively spliced exons and exon fragments (alternative exons) from minor isoforms experience lower selective pressure at the amino acid level, accompanied by selection against synonymous sequence variation. The results of the McDonald-Kreitman test suggest that alternatively spliced exons, unlike exons constitutively included in the mRNA, are also subject to positive selection, with up to 27% of amino acids fixed by positive selection.
引用
收藏
页码:94 / 98
页数:5
相关论文
共 30 条
[1]   Global analysis of exon creation versus loss and the role of alternative splicing in 17 vertebrate genomes [J].
Alekseyenko, Alexander V. ;
Kim, Namshin ;
Lee, Christopher J. .
RNA, 2007, 13 (05) :661-670
[2]   Natural selection on protein-coding genes in the human genome [J].
Bustamante, CD ;
Fledel-Alon, A ;
Williamson, S ;
Nielsen, R ;
Hubisz, MT ;
Glanowski, S ;
Tanenbaum, DM ;
White, TJ ;
Sninsky, JJ ;
Hernandez, RD ;
Civello, D ;
Adams, MD ;
Cargill, M ;
Clark, AG .
NATURE, 2005, 437 (7062) :1153-1157
[3]   Synonymous SNPs provide evidence for selective constraint on human exonic splicing enhancers [J].
Carlini, DB ;
Genut, JE .
JOURNAL OF MOLECULAR EVOLUTION, 2006, 62 (01) :89-98
[4]   Changes in alternative splicing of human and mouse genes are accompanied by faster evolution of constitutive exons [J].
Cusack, BP ;
Wolfe, KH .
MOLECULAR BIOLOGY AND EVOLUTION, 2005, 22 (11) :2198-2208
[5]   Fast rate of evolution in alternatively spliced coding regions of mammalian genes [J].
Ermakova, EO ;
Nurtdinov, RN ;
Gelfand, MS .
BMC GENOMICS, 2006, 7 (1)
[6]   Single nucleotide polymorphism-based validation of exonic splicing enhancers [J].
Fairbrother, WG ;
Holste, D ;
Burge, CB ;
Sharp, PA .
PLOS BIOLOGY, 2004, 2 (09) :1388-1395
[7]   Testing the neutral theory of molecular evolution with genomic data from Drosophila [J].
Fay, JC ;
Wyckoff, GJ ;
Wu, CI .
NATURE, 2002, 415 (6875) :1024-1026
[8]   Alternative splicing: increasing diversity in the proteomic world [J].
Graveley, BR .
TRENDS IN GENETICS, 2001, 17 (02) :100-107
[9]   Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays [J].
Johnson, JM ;
Castle, J ;
Garrett-Engele, P ;
Kan, ZY ;
Loerch, PM ;
Armour, CD ;
Santos, R ;
Schadt, EE ;
Stoughton, R ;
Shoemaker, DD .
SCIENCE, 2003, 302 (5653) :2141-2144
[10]   Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22 [J].
Kampa, D ;
Cheng, J ;
Kapranov, P ;
Yamanaka, M ;
Brubaker, S ;
Cawley, S ;
Drenkow, J ;
Piccolboni, A ;
Bekiranov, S ;
Helt, G ;
Tammana, H ;
Gingeras, TR .
GENOME RESEARCH, 2004, 14 (03) :331-342