Multi-time, multi-scale correlation functions in turbulence and in turbulent models

被引:34
作者
Biferale, L
Boffetta, G
Celani, A
Toschi, F
机构
[1] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy
[2] Univ Roma Tor Vergata, INFM, I-00133 Rome, Italy
[3] Univ Turin, Dipartimento Fis Gen, I-10125 Turin, Italy
[4] Unita Torino Univ, INFM, Turin, Italy
[5] Politecn Torino, Dipartimento Ingn Aerospaziale, I-10129 Turin, Italy
[6] Unita Tor Vergata, INFM, Rome, Italy
[7] Univ Pisa, Dipartimento Fis, I-56126 Pisa, Italy
关键词
turbulence; multifractals; dynamical models;
D O I
10.1016/S0167-2789(98)00277-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A multifractal-like representation for multi-time, multi-scale velocity correlation in turbulence and dynamical turbulent models is proposed. The importance of subleading contributions to time correlations is highlighted. The fulfillment of the dynamical constraints due to the equations of motion is thoroughly discussed. The predictions stemming from this representation are tested within the framework of shell models for turbulence. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:187 / 197
页数:11
相关论文
共 13 条
[1]  
[Anonymous], 1983, P INT SCH PHYS ENR F
[2]  
BELINICHER VI, IN PRESS J STAT PHYS
[3]   Multiscale velocity correlations in turbulence [J].
Benzi, R ;
Biferale, L ;
Toschi, F .
PHYSICAL REVIEW LETTERS, 1998, 80 (15) :3244-3247
[4]   Mimicking a turbulent signal: Sequential multiaffine processes [J].
Biferale, L ;
Boffetta, G ;
Celani, A ;
Crisanti, A ;
Vulpiani, A .
PHYSICAL REVIEW E, 1998, 57 (06) :R6261-R6264
[5]  
Bohr T., 1998, DYNAMICAL SYSTEMS AP
[6]  
CELANI A, 1998, UNPUB PHYS REV LETT
[7]   LAGRANGIAN FIELD-THEORY, MULTIFRACTALS, AND UNIVERSAL SCALING IN TURBULENCE [J].
EYINK, GL .
PHYSICS LETTERS A, 1993, 172 (05) :355-360
[8]   SCALING AND DISSIPATION IN THE GOY SHELL-MODEL [J].
KADANOFF, L ;
LOHSE, D ;
WANG, J ;
BENZI, R .
PHYSICS OF FLUIDS, 1995, 7 (03) :617-629
[9]   Improved shell model of turbulence [J].
L'vov, VS ;
Podivilov, E ;
Pomyalov, A ;
Procaccia, I ;
Vandembroucq, D .
PHYSICAL REVIEW E, 1998, 58 (02) :1811-1822
[10]   Towards a nonperturbative theory of hydrodynamic turbulence: Fusion rules, exact bridge relations, and anomalous viscous scaling functions [J].
Lvov, V ;
Procaccia, I .
PHYSICAL REVIEW E, 1996, 54 (06) :6268-6284