From protein microarrays to diagnostic antigen discovery:: a study of the pathogen Francisella tularensis

被引:68
作者
Sundaresh, Suman
Randall, Arlo
Unal, Berkay
Petersen, Jeannine M.
Belisle, John T.
Hartley, M. Gill
Duffield, Melanie
Titball, Richard W.
Davies, D. Huw
Felgner, Philip L.
Baldi, Pierre [1 ]
机构
[1] Univ Calif Irvine, Sch Informat & Comp Sci, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Inst Genom & Bioinformat, Irvine, CA USA
[3] Univ Calif Irvine, Ctr Virus Res, Irvine, CA USA
[4] Colorado State Univ, Ctr Dis Control & Prevent, Ft Collins, CO 80523 USA
[5] Colorado State Univ, Mycobacteriol Res Labs, Dept Microbiol Immunol & Pathol, Ft Collins, CO 80523 USA
[6] Def Sci & Technol Lab, Porton Down, England
关键词
D O I
10.1093/bioinformatics/btm207
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: An important application of protein microarray data analysis is identifying a serodiagnostic antigen set that can reliably detect patterns and classify antigen expression profiles. This work addresses this problem using antibody responses to protein markers measured by a novel high-throughput microarray technology. The findings from this study have direct relevance to rapid, broad-based diagnostic and vaccine development. Results: Protein microarray chips are probed with sera from individuals infected with the bacteria Francisella tularensis, a category A biodefense pathogen. A two-step approach to the diagnostic process is presented ( 1) feature ( antigen) selection and ( 2) classification using antigen response measurements obtained from F. tularensis microarrays ( 244 antigens, 46 infected and 54 healthy human sera measurements). To select antigens, a ranking scheme based on the identification of significant immune responses and differential expression analysis is described. Classification methods including k-nearest neighbors, support vector machines (SVM) and k-Means clustering are applied to training data using selected antigen sets of various sizes. SVM based models yield prediction accuracy rates in the range of similar to 90% on validation data, when antigen set sizes are between 25 and 50. These results strongly indicate that the top-ranked antigens can be considered high-priority candidates for diagnostic development.
引用
收藏
页码:I508 / I518
页数:11
相关论文
共 47 条
[1]  
[Anonymous], 1997, Machine Learning
[2]   PRED-TMBB:: a web server for predicting the topology of β-barrel outer membrane proteins [J].
Bagos, PG ;
Liakopoulos, TD ;
Spyropoulos, IC ;
Hamodrakas, SJ .
NUCLEIC ACIDS RESEARCH, 2004, 32 :W400-W404
[3]   A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes [J].
Baldi, P ;
Long, AD .
BIOINFORMATICS, 2001, 17 (06) :509-519
[4]  
BALDI P, 2002, DNA MICROARRAYS GENE
[5]   Analysis of human leukaemias and lymphomas using extensive immunophenotypes from an antibody microarray [J].
Belov, Larissa ;
Mulligan, Stephen P. ;
Barber, Nicole ;
Woolfson, Adrian ;
Scott, Mike ;
Stoner, Kerryn ;
Chrisp, Jeremy S. ;
Sewell, William A. ;
Bradstock, Kenneth F. ;
Bendall, Linda ;
Pascovici, Dana S. ;
Thomas, Mervyn ;
Erber, Wendy ;
Huang, Pauline ;
Sartor, Mary ;
Young, Graham A. R. ;
Wiley, James S. ;
Juneja, Surender ;
Wierda, William G. ;
Green, Anthony R. ;
Keating, Michael J. ;
Christopherson, Richard I. .
BRITISH JOURNAL OF HAEMATOLOGY, 2006, 135 (02) :184-197
[6]   Improved prediction of signal peptides: SignalP 3.0 [J].
Bendtsen, JD ;
Nielsen, H ;
von Heijne, G ;
Brunak, S .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 340 (04) :783-795
[7]   GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated:: Potential role in interactions with the host and the gastric pathogen Helicobacter pylori [J].
Bergonzelli, GE ;
Granato, D ;
Pridmore, RD ;
Marvin-Guy, LF ;
Donnicola, D ;
Corthésy-Theulaz, IE .
INFECTION AND IMMUNITY, 2006, 74 (01) :425-434
[8]   Avoiding model selection bias in small-sample genomic datasets [J].
Berrar, D ;
Bradbury, I ;
Dubitzky, W .
BIOINFORMATICS, 2006, 22 (10) :1245-1250
[9]   Predicting transmembrane beta-barrels in proteomes [J].
Bigelow, HR ;
Petrey, DS ;
Liu, J ;
Przybylski, D ;
Rost, B .
NUCLEIC ACIDS RESEARCH, 2004, 32 (08) :2566-2577
[10]   Protein arrays and pattern recognition: New tools to assist in the identification and management of autoimmune disease [J].
Binder, Steven R. ;
Hixson, Craig ;
Glossenger, John .
AUTOIMMUNITY REVIEWS, 2006, 5 (04) :234-241