Quantized thermal conductance of dielectric quantum wires

被引:605
作者
Rego, LGC [1 ]
Kirczenow, G [1 ]
机构
[1] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada
关键词
D O I
10.1103/PhysRevLett.81.232
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the Landauer formulation of transport theory, we predict that dielectric quantum wires should exhibit quantized thermal conductance at low temperatures in a ballistic phonon regime. The quantum of thermal conductance is universal, independent of the characteristics of the material, and equal to pi(2)k(B)(2)T/3h where k(B) is the Boltzmann constant, h is Planck's constant, and T is the temperature. Quantized thermal conductance should be experimentally observable in suspended nanostructures adiabatically coupled to reservoirs, devices that can be realized at the present time.
引用
收藏
页码:232 / 235
页数:4
相关论文
共 31 条
[1]  
[Anonymous], 1990, ACOUSTIC FIELDS WAVE
[2]   BALLISTIC ELECTRONIC CONDUCTANCE OF AN ORIFICE [J].
AVISHAI, Y ;
BAND, YB .
PHYSICAL REVIEW B, 1989, 40 (18) :12535-12538
[3]   ABSENCE OF BACKSCATTERING IN THE QUANTUM HALL-EFFECT IN MULTIPROBE CONDUCTORS [J].
BUTTIKER, M .
PHYSICAL REVIEW B, 1988, 38 (14) :9375-9389
[4]   4-TERMINAL PHASE-COHERENT CONDUCTANCE [J].
BUTTIKER, M .
PHYSICAL REVIEW LETTERS, 1986, 57 (14) :1761-1764
[5]   CASE FOR NONADIABATIC QUANTIZED CONDUCTANCE IN SMOOTH BALLISTIC CONSTRICTIONS [J].
CASTANO, E ;
KIRCZENOW, G .
PHYSICAL REVIEW B, 1992, 45 (03) :1514-1517
[6]   THERMAL-CONDUCTIVITY IN DISORDERED INTERACTING-ELECTRON SYSTEMS [J].
CASTELLANI, C ;
DICASTRO, C ;
KOTLIAR, G ;
LEE, PA ;
STRINATI, G .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :477-480
[7]   LAW OF WIEDEMANN AND FRANZ [J].
CHESTER, GV ;
THELLUNG, A .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1961, 77 (497) :1005-&
[8]   ON THE BALLISTIC CONDUCTANCE OF SMALL CONTACTS AND ITS RESONANT STRUCTURE - TRUMPET EFFECT WASHES OUT RESONANT STRUCTURE [J].
ESCAPA, L ;
GARCIA, N .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (11) :2125-2129
[9]  
GLAZMAN LI, 1988, JETP LETT+, V48, P238
[10]  
Graff K. F., 1975, WAVE MOTION ELASTIC