Computing geodesic paths on manifolds

被引:735
作者
Kimmel, R
Sethian, JA [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
关键词
D O I
10.1073/pnas.95.15.8431
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Fast Marching Method is a numerical algorithm for solving the Eikonal equation on a rectangular orthogonal mesh in O(M log M) steps, where hi is the total number of grid points. In this paper we extend the Fast Marching Method to triangulated domains with the same computational complexity As an application, we provide an optimal time algorithm for computing the geodesic distances and thereby extracting shortest paths on triangulated manifolds.
引用
收藏
页码:8431 / 8435
页数:5
相关论文
共 9 条
[1]   A FAST LEVEL SET METHOD FOR PROPAGATING INTERFACES [J].
ADALSTEINSSON, D ;
SETHIAN, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 118 (02) :269-277
[2]  
BARTH T, 1998, IN PRESS J COMP PHYS
[3]   COMPUTING MINIMAL-SURFACES VIA LEVEL SET CURVATURE FLOW [J].
CHOPP, DL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 106 (01) :77-91
[4]  
Dijkstra E. W., 1959, NUMER MATH, V1, P269, DOI DOI 10.1007/BF01386390
[5]  
Malladi R., 1995, IEEE T PATTERN ANAL, V17
[6]   A VISCOSITY SOLUTIONS APPROACH TO SHAPE-FROM-SHADING [J].
ROUY, E ;
TOURIN, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (03) :867-884
[7]  
Sethian J.A., 1996, Level Set Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
[8]   A fast marching level set method for monotonically advancing fronts [J].
Sethian, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (04) :1591-1595
[9]   CURVATURE AND THE EVOLUTION OF FRONTS [J].
SETHIAN, JA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 101 (04) :487-499