Electron-electron correlation in graphite:: A combined angle-resolved photoemission and first-principles study

被引:96
作者
Grueneis, A. [1 ]
Attaccalite, C. [2 ]
Pichler, T. [1 ]
Zabolotnyy, V. [1 ]
Shiozawa, H. [1 ]
Molodtsov, S. L. [3 ]
Inosov, D. [1 ]
Koitzsch, A. [1 ]
Knupfer, M. [1 ]
Schiessling, J. [4 ]
Follath, R. [5 ]
Weber, R. [5 ]
Rudolf, P. [6 ]
Wirtz, L. [2 ]
Rubio, A. [7 ,8 ]
机构
[1] IFW Dresden, D-01171 Dresden, Germany
[2] Inst Elect Microelect & Nanotechnol, F-59652 Villeneuve Dascq, France
[3] Tech Univ Dresden, Inst Festkorperphys, D-01069 Dresden, Germany
[4] Uppsala Univ, Dept Phys, Uppsala 75121, Sweden
[5] BESSY 2, D-12489 Berlin, Germany
[6] Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands
[7] Univ Basque Country, European Theoret Spectroscopy Facil, San Sebastian 20018, Spain
[8] Univ Basque Country, Dept Mat Phys, San Sebastian 20018, Spain
关键词
D O I
10.1103/PhysRevLett.100.037601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The full three-dimensional dispersion of the pi bands, Fermi velocities, and effective masses are measured with angle-resolved photoemission spectroscopy and compared to first-principles calculations. The band structure by density-functional theory underestimates the slope of the bands and the trigonal warping effect. Including electron-electron correlation on the level of the GW approximation, however, yields remarkable improvement in the vicinity of the Fermi level. This demonstrates the breakdown of the independent electron picture in semimetallic graphite and points toward a pronounced role of electron correlation for the interpretation of transport experiments and double-resonant Raman scattering for a wide range of carbon based materials.
引用
收藏
页数:4
相关论文
共 28 条
[1]   Elastic scattering effects in the electron mean free path in a graphite overlayer studied by photoelectron spectroscopy and LEED [J].
Barrett, N ;
Krasovskii, EE ;
Themlin, JM ;
Strocov, VN .
PHYSICAL REVIEW B, 2005, 71 (03)
[2]   Quasiparticle dynamics in graphene [J].
Bostwick, Aaron ;
Ohta, Taisuke ;
Seyller, Thomas ;
Horn, Karsten ;
Rotenberg, Eli .
NATURE PHYSICS, 2007, 3 (01) :36-40
[3]   INTERCALATION COMPOUNDS OF GRAPHITE [J].
DRESSELHAUS, MS ;
DRESSELHAUS, G .
ADVANCES IN PHYSICS, 1981, 30 (02) :139-326
[4]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[5]   First-principles computation of material properties: the ABINIT software project [J].
Gonze, X ;
Beuken, JM ;
Caracas, R ;
Detraux, F ;
Fuchs, M ;
Rignanese, GM ;
Sindic, L ;
Verstraete, M ;
Zerah, G ;
Jollet, F ;
Torrent, M ;
Roy, A ;
Mikami, M ;
Ghosez, P ;
Raty, JY ;
Allan, DC .
COMPUTATIONAL MATERIALS SCIENCE, 2002, 25 (03) :478-492
[6]   Spatially resolved raman spectroscopy of single- and few-layer graphene [J].
Graf, D. ;
Molitor, F. ;
Ensslin, K. ;
Stampfer, C. ;
Jungen, A. ;
Hierold, C. ;
Wirtz, L. .
NANO LETTERS, 2007, 7 (02) :238-242
[7]   NEW METHOD FOR CALCULATING 1-PARTICLE GREENS FUNCTION WITH APPLICATION TO ELECTRON-GAS PROBLEM [J].
HEDIN, L .
PHYSICAL REVIEW, 1965, 139 (3A) :A796-+
[8]   Band widening in graphite [J].
Heske, C ;
Treusch, R ;
Himpsel, FJ ;
Kakar, S ;
Terminello, LJ ;
Weyer, HJ ;
Shirley, EL .
PHYSICAL REVIEW B, 1999, 59 (07) :4680-4684
[9]  
Hufner S., 1996, PHOTOELECTRON SPECTR
[10]   ELECTRON CORRELATION IN SEMICONDUCTORS AND INSULATORS - BAND-GAPS AND QUASI-PARTICLE ENERGIES [J].
HYBERTSEN, MS ;
LOUIE, SG .
PHYSICAL REVIEW B, 1986, 34 (08) :5390-5413