Discrete Newton's method with local variations for solving large-scale nonlinear systems

被引:6
作者
Diniz-Ehrhardt, MA [1 ]
Gomes-Ruggiero, MA [1 ]
Lopes, VLR [1 ]
Martínez, JM [1 ]
机构
[1] UNICAMP, IMECC, DMA, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
nonlinear systems; discrete Newton's method; local variations method;
D O I
10.1080/02331930310001611538
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A globally convergent discrete Newton method is proposed for solving large-scale nonlinear systems of equations. Advantage is taken from discretization steps so that the residual norm can be reduced while the Jacobian is approximated, besides the reduction at Newtonian iterations. The Curtis-Powell-Reid (CPR) scheme for discretization is used for dealing with sparse Jacobians. Global convergence is proved and numerical experiments are presented.
引用
收藏
页码:417 / 440
页数:24
相关论文
共 15 条
[1]  
BANITCHOUK NV, 1966, ZH VYCH MAT MAT FIZ, V6, P947
[2]   ESTIMATION OF SPARSE JACOBIAN MATRICES AND GRAPH-COLORING PROBLEMS [J].
COLEMAN, TF ;
MORE, JJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (01) :187-209
[3]  
Curtis A. R., 1974, Journal of the Institute of Mathematics and Its Applications, V13, P117
[4]  
Dennis Jr J. E., 1996, SIAM CLASSICS APPL M
[5]   Benchmarking optimization software with performance profiles [J].
Dolan, ED ;
Moré, JJ .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :201-213
[6]   Solving nonlinear systems of equations by means of quasi-Newton methods with a nonmonotone strategy [J].
Friedlander, A ;
GomesRuggiero, MA ;
Kozakevich, DN ;
Martinez, JM ;
Santos, SA .
OPTIMIZATION METHODS & SOFTWARE, 1997, 8 (01) :25-51
[7]  
GOLDFARB D, 1984, MATH COMPUT, V43, P69, DOI 10.1090/S0025-5718-1984-0744925-5
[8]   A numerical study on large-scale nonlinear solvers [J].
GomesRuggiero, MA ;
Kozakevich, DN ;
Martinez, JM .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (03) :1-13
[9]  
Kelley C. T., 1995, SIAM
[10]   A derivative-free line search and global convergence of Broyden-like method for nonlinear equations [J].
Li, DH ;
Fukushima, M .
OPTIMIZATION METHODS & SOFTWARE, 2000, 13 (03) :181-201