Layer by layer buildup of polysaccharide films: Physical chemistry and cellular adhesion aspects

被引:451
作者
Richert, L
Lavalle, P
Payan, E
Shu, XZ
Prestwich, GD
Stoltz, JF
Schaaf, P
Voegel, JC
Picart, C
机构
[1] Univ Strasbourg 1, U595, Fac Med, INSERM, F-67085 Strasbourg, France
[2] Lab Physiopathol & Pharmacol Articulaires, UMR 7561, F-54505 Vandoeuvre Les Nancy, France
[3] Fac Med Vandoeuvre Nancy, IFR 111, F-54505 Vandoeuvre Les Nancy, France
[4] Univ Utah, Dept Med Chem, Salt Lake City, UT 84112 USA
[5] Lab Mecan & Ingn Cellulaire & Tissulaire, UMR 7563, F-54505 Vandoeuvre Les Nancy, France
[6] Fac Med, IFR 3, F-54505 Vandoeuvre Les Nancy, France
[7] Univ Strasbourg 1, CNRS, Inst Charles Sadron, F-67083 Strasbourg, France
[8] Ecole Europeenne Chim Polymeres & Mat Strasbourg, F-67087 Strasbourg 2, France
关键词
D O I
10.1021/la035415n
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The formation of polysaccharide films based on the alternate deposition of chitosan (CHI) and hyaluronan (HA) was investigated by several techniques. The multilayer buildup takes place in two stages: during the first stage, the surface is covered by isolated islets that grow and coalesce as the construction goes on. After several deposition steps, a continuous film is formed and the second stage of the buildup process takes place. The whole process is characterized by an exponential increase of the mass and thickness of the film with the number of deposition steps. This exponential growth mechanism is related to the ability of the polycation to diffuse "in" and "out" of the whole film at each deposition step. Using confocal laser microscopy and fluorescently labeled CHI, we show that such a diffusion behavior, already observed with poly(L-lysine) as a polycation, is also found with CHI, a polycation presenting a large persistence length. We also analyze the effect of the molecular weight (MW) of the diffusing polyelectrolyte (CHI) on the buildup process and observe a faster growth for low MW chitosan. The influence of the salt concentration during buildup is also investigated. Whereas the CHI/HA films grow rapidly at high salt concentration (0.15 M NaCl) with the formation of a uniform film after only a few deposition steps, it is very difficult to build the film at 10(-4) M NaCl. In this latter case, the deposited mass increases linearly with the number of deposition steps and the first deposition stage, where the surface is covered by islets, lasts at least up to 50 bilayer deposition steps. However, even at these low salt concentrations and in the islet configuration, CHI chains seem to diffuse in and out of the CHI/HA complexes. The linear mass increase of the film with the number of deposition steps despite the CHI diffusion is explained by a partial redissolution of the CHI/HA complexes forming the film during different steps of the buildup process. Finally, the uniform films built at high salt concentrations were also found to be chondrocyte resistant and, more interestingly, bacterial resistant. Therefore, the (CHI/HA) films may be used as an antimicrobial coating.
引用
收藏
页码:448 / 458
页数:11
相关论文
共 67 条
[1]   Polyelectrolyte complexes and layer-by-layer capsules from chitosan/chitosan sulfate [J].
Berth, G ;
Voigt, A ;
Dautzenberg, H ;
Donath, E ;
Möhwald, H .
BIOMACROMOLECULES, 2002, 3 (03) :579-590
[2]   The degree of acetylation of chitosans and its effect on the chain conformation in aqueous solution [J].
Berth, G ;
Dautzenberg, H .
CARBOHYDRATE POLYMERS, 2002, 47 (01) :39-51
[3]  
Bertrand P, 2000, MACROMOL RAPID COMM, V21, P319, DOI 10.1002/(SICI)1521-3927(20000401)21:7<319::AID-MARC319>3.0.CO
[4]  
2-7
[5]   Buildup of exponentially growing multilayer polypeptide films with internal secondary structure [J].
Boulmedais, F ;
Ball, V ;
Schwinte, P ;
Frisch, B ;
Schaaf, P ;
Voegel, JC .
LANGMUIR, 2003, 19 (02) :440-445
[6]   Characterization of polyelectrolyte-protein multilayer films by atomic force microscopy, scanning electron microscopy, and Fourier transform infrared reflection-absorption spectroscopy [J].
Caruso, F ;
Furlong, DN ;
Ariga, K ;
Ichinose, I ;
Kunitake, T .
LANGMUIR, 1998, 14 (16) :4559-4565
[7]   Investigation of electrostatic interactions in polyelectrolyte multilayer films:: Binding of anionic fluorescent probes to layers assembled onto colloids [J].
Caruso, F ;
Lichtenfeld, H ;
Donath, E ;
Möhwald, H .
MACROMOLECULES, 1999, 32 (07) :2317-2328
[8]   Ultrathin multilayer polyelectrolyte films on gold: Construction and thickness determination .1. [J].
Caruso, F ;
Niikura, K ;
Furlong, DN ;
Okahata, Y .
LANGMUIR, 1997, 13 (13) :3422-3426
[9]   Peptide hormone covalently bound to polyelectrolytes and embedded into multilayer architectures conserving full biological activity [J].
Chluba, J ;
Voegel, JC ;
Decher, G ;
Erbacher, P ;
Schaaf, P ;
Ogier, J .
BIOMACROMOLECULES, 2001, 2 (03) :800-805
[10]   Hydrodynamic studies on chitosans in aqueous solution [J].
Cölfen, H ;
Berth, G ;
Dautzenberg, H .
CARBOHYDRATE POLYMERS, 2001, 45 (04) :373-383