A latent variable approach for meta-analysis of gene expression data from multiple microarray experiments

被引:43
作者
Choi, Hyungwon [3 ]
Shen, Ronglai [3 ]
Chinnaiyan, Arul M. [4 ,5 ]
Ghosh, Debashis [1 ,2 ]
机构
[1] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[2] Penn State Univ, Huck Inst Life Sci, University Pk, PA 16802 USA
[3] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Pathol, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Urol, Ann Arbor, MI 48109 USA
关键词
D O I
10.1186/1471-2105-8-364
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: With the explosion in data generated using microarray technology by different investigators working on similar experiments, it is of interest to combine results across multiple studies. Results: In this article, we describe a general probabilistic framework for combining high-throughput genomic data from several related microarray experiments using mixture models. A key feature of the model is the use of latent variables that represent quantities that can be combined across diverse platforms. We consider two methods for estimation of an index termed the probability of expression (POE). The first, reported in previous work by the authors, involves Markov Chain Monte Carlo (MCMC) techniques. The second method is a faster algorithm based on the expectation-maximization (EM) algorithm. The methods are illustrated with application to a meta-analysis of datasets for metastatic cancer. Conclusion: The statistical methods described in the paper are available as an R package, metaArray 1.8.1, which is at Bioconductor, whose URL is http://www.bioconductor.org/.
引用
收藏
页数:20
相关论文
共 35 条
[1]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[2]   Gene expression patterns in human liver cancers [J].
Chen, X ;
Cheung, ST ;
So, S ;
Fan, ST ;
Barry, C ;
Higgins, J ;
Lai, KM ;
Ji, JF ;
Dudoit, S ;
Ng, IOL ;
van de Rijn, M ;
Botstein, D ;
Brown, PO .
MOLECULAR BIOLOGY OF THE CELL, 2002, 13 (06) :1929-1939
[3]   Combining multiple microarray studies and modeling interstudy variation [J].
Choi, Jung Kyoon ;
Yu, Ungsik ;
Kim, Sangsoo ;
Yoo, Ook Joon .
BIOINFORMATICS, 2003, 19 :i84-i90
[4]   Bayesian models for pooling microarray studies with multiple sources of replications [J].
Conlon, Erin M. ;
Song, Joon J. ;
Liu, Jun S. .
BMC BIOINFORMATICS, 2006, 7 (1)
[5]  
COX DR, 1972, J R STAT SOC B, V187, P220
[6]   Normal uniform mixture differential gene expression detection for cDNA microarrays [J].
Dean, N ;
Raftery, AE .
BMC BIOINFORMATICS, 2005, 6 (1)
[7]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[8]   SOURCE: a unified genomic resource of functional annotations, ontologies, and gene expression data [J].
Diehn, M ;
Sherlock, G ;
Binkley, G ;
Jin, H ;
Matese, JC ;
Hernandez-Boussard, T ;
Rees, CA ;
Cherry, JM ;
Botstein, D ;
Brown, PO ;
Alizadeh, AA .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :219-223
[9]   Diversity of gene expression in adenocarcinoma of the lung [J].
Garber, ME ;
Troyanskaya, OG ;
Schluens, K ;
Petersen, S ;
Thaesler, Z ;
Pacyna-Gengelbach, M ;
van de Rijn, M ;
Rosen, GD ;
Perou, CM ;
Whyte, RI ;
Altman, RB ;
Brown, PO ;
Botstein, D ;
Petersen, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (24) :13784-13789
[10]   Gene expression profiling reveals a massive, aneuploidy-dependent transcriptional deregulation and distinct differences between lymph node-negative and lymph node-positive colon carcinomas [J].
Grade, Marian ;
Hoermann, Patrick ;
Becker, Sandra ;
Hummon, Amanda B. ;
Wangsa, Danny ;
Varma, Sudhir ;
Simon, Richard ;
Liersch, Torsten ;
Becker, Heinz ;
Difilippantonio, Michael J. ;
Ghadimi, B. Michael ;
Ried, Thomas .
CANCER RESEARCH, 2007, 67 (01) :41-56