Direct synthesis of graphitic carbon nanostructures from saccharides and their use as electrocatalytic supports

被引:92
作者
Sevilla, M. [1 ]
Sanchis, C. [2 ,3 ]
Valdes-Solis, T. [1 ]
Morallon, E. [2 ,3 ]
Fuertes, A. B. [1 ]
机构
[1] CSIC, Inst Nacl Carbon, E-33080 Oviedo, Spain
[2] Univ Alicante, Dept Quim Fis, E-03080 Alicante, Spain
[3] Univ Alicante, Inst Univ Mat, E-03080 Alicante, Spain
关键词
D O I
10.1016/j.carbon.2008.02.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An easy method is described for fabricating graphitic carbon nanostructures (GCNs) from a variety of saccharides; i.e., a monosaccharide (glucose), a disaccharide (sucrose) and a polysaccharide (starch). The synthesis scheme consists of: (a) impregnation of saccharide with Ni or Fe nitrates, (b) heat treatment under inert atmosphere (N-2) up to 900 degrees C or 1000 degrees C and (c) oxidation in liquid phase to selectively recover the graphitic carbon. This procedure leads to GCNs with a variety of morphologies: nanopipes nanocoils and nanocapsules. Such GCNs have a high crystallinity, as shown by TEM/SAED, XRD and Raman analysis. The GCNs were used as supports for platinum nanoparticles, which were well dispersed (Mean Pt size similar to 2-3 nm). Electrocatalysts thus prepared have electrocatalytic surface areas in the 70-95 m(2) g(-1) Pt range and exhibit high catalytic activities towards methanol electrooxidation. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:931 / 939
页数:9
相关论文
共 36 条
[1]   COBALT-CATALYZED GROWTH OF CARBON NANOTUBES WITH SINGLE-ATOMIC-LAYERWALLS [J].
BETHUNE, DS ;
KIANG, CH ;
DEVRIES, MS ;
GORMAN, G ;
SAVOY, R ;
VAZQUEZ, J ;
BEYERS, R .
NATURE, 1993, 363 (6430) :605-607
[2]  
Cassell AM, 1999, J PHYS CHEM B, V103, P6484, DOI 10.1021/jp990957sCCC:$18.00
[3]   Polymer-mediated synthesis of highly dispersed Pt nanoparticles on carbon black [J].
Chen, M ;
Xing, YC .
LANGMUIR, 2005, 21 (20) :9334-9338
[4]   GRAPHITE FORMATION BY DISSOLUTION-PRECIPITATION OF CARBON IN COBALT, NICKEL AND IRON [J].
DERBYSHIRE, FJ ;
PRESLAND, AEB ;
TRIMM, DL .
CARBON, 1975, 13 (02) :111-113
[5]   Preparation of platinum-ruthenium onto solid polymer electrolyte membrane and the application to a DMFC anode [J].
Fujiwara, N ;
Yasuda, K ;
Ioroi, T ;
Siroma, Z ;
Miyazaki, Y .
ELECTROCHIMICA ACTA, 2002, 47 (25) :4079-4084
[6]   High dispersion and electrocatalytic properties of Pt nanoparticles on SWNT bundles [J].
Guo, DJ ;
Li, HL .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2004, 573 (01) :197-202
[7]   Simple solid-phase synthesis of hollow graphitic nanoparticles and their application to direct methanol fuel cell electrodes [J].
Han, SJ ;
Yun, YK ;
Park, KW ;
Sung, YE ;
Hyeon, T .
ADVANCED MATERIALS, 2003, 15 (22) :1922-+
[8]   ELECTROCHEMISTRY OF METHANOL AT LOW-INDEX CRYSTAL PLANES OF PLATINUM - AN INTEGRATED VOLTAMMETRIC AND CHRONOAMPEROMETRIC STUDY [J].
HERRERO, E ;
FRANASZCZUK, K ;
WIECKOWSKI, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (19) :5074-5083
[9]   Structure sensitivity of methanol electrooxidation pathways on platinum: An on-line electrochemical mass spectrometry study [J].
Housmans, Tom H. M. ;
Wonders, Ad H. ;
Koper, Marc T. M. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (20) :10021-10031
[10]  
Inagaki M, 2000, NEW CARBONS CONTROL