RECURRENCE-BASED TIME SERIES ANALYSIS BY MEANS OF COMPLEX NETWORK METHODS

被引:318
作者
Donner, Reik V. [1 ,2 ,3 ]
Small, Michael [4 ]
Donges, Jonathan F. [2 ,5 ]
Marwan, Norbert [2 ]
Zou, Yong [2 ]
Xiang, Ruoxi [4 ]
Kurths, Juergen [2 ,5 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Potsdam Inst Climate Impact Res, D-14412 Potsdam, Germany
[3] Tech Univ Dresden, Inst Transport & Econ, D-01187 Dresden, Germany
[4] Hong Kong Polytech Univ, Elect & Informat Engn Dept, Kowloon, Hong Kong, Peoples R China
[5] Humboldt Univ, Dept Phys, D-12489 Berlin, Germany
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2011年 / 21卷 / 04期
关键词
Complex networks; time series analysis; recurrence plots; VISIBILITY GRAPH; SYNCHRONIZATION; PLOTS; QUANTIFICATION; CENTRALITY; PATTERNS; INDEX;
D O I
10.1142/S0218127411029021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Complex networks are an important paradigm of modern complex systems sciences which allows quantitatively assessing the structural properties of systems composed of different interacting entities. During the last years, intensive efforts have been spent on applying network-based concepts also for the analysis of dynamically relevant higher-order statistical properties of time series. Notably, many corresponding approaches are closely related to the concept of recurrence in phase space. In this paper, we review recent methodological advances in time series analysis based on complex networks, with a special emphasis on methods founded on recurrence plots. The potentials and limitations of the individual methods are discussed and illustrated for paradigmatic examples of dynamical systems as well as for real-world time series. Complex network measures are shown to provide information about structural features of dynamical systems that are complementary to those characterized by other methods of time series analysis and, hence, substantially enrich the knowledge gathered from other existing (linear as well as nonlinear) approaches.
引用
收藏
页码:1019 / 1046
页数:28
相关论文
共 100 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Classes of small-world networks [J].
Amaral, LAN ;
Scala, A ;
Barthélémy, M ;
Stanley, HE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (21) :11149-11152
[3]  
[Anonymous], 1890, Acta mathematica
[4]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[5]  
Bandt C, 2008, UNDERST COMPLEX SYST, P153, DOI 10.1007/978-3-540-75632-3_5
[6]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[7]   Characterization of complex networks: A survey of measurements [J].
Costa, L. Da F. ;
Rodrigues, F. A. ;
Travieso, G. ;
Boas, P. R. Villas .
ADVANCES IN PHYSICS, 2007, 56 (01) :167-242
[8]  
Csardi G., 2006, The igraph software package for complex network research (1.6.0) [Computer software]
[9]   A review of symbolic analysis of experimental data [J].
Daw, CS ;
Finney, CEA ;
Tracy, ER .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (02) :915-930
[10]   LINE-OF-SIGHT COMMUNICATION ON TERRAIN MODELS [J].
DEFLORIANI, L ;
MARZANO, P ;
PUPPO, E .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SYSTEMS, 1994, 8 (04) :329-342