Vector valued differentiation theorems for multiparameter additive processes in Lp spaces

被引:52
作者
Sato, R [1 ]
机构
[1] Okayama Univ, Fac Sci, Dept Math, Okayama 700, Japan
关键词
vector valued local ergodic theorem and differentiation theorem; multiparameter additive process; contraction majorant;
D O I
10.1023/A:1009728507209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Banach space and (Omega, Sigma, mu) be a sigma-finite measure space. We consider a strongly continuous d-dimensional semigroup T = {T(u) : u = (u(1), ..., u(d)), u(i) > 0, 1 less than or equal to i less than or equal to d} of linear contractions on L-p((Omega, Sigma, mu); X), with 1 less than or equal to p < infinity. In this paper differentiation theorems are proved for d-dimensional bounded processes in L-p((Omega, Sigma, mu); X) which are additive with respect to T. In the theorems below we assume that each T(lc) possesses a contraction majorant P(u) defined on L-p((Omega, Sigma, mu); R), that is, P(u) is a positive linear contraction on L-p((Omega, Sigma, mu); R) such that \\T(u)f(omega)\\ less than or equal to P(u)\\f(.)\\(omega) almost everywhere on Omega for all f is an element of L-p((Omega, Sigma, mu); X).
引用
收藏
页码:1 / 18
页数:18
相关论文
共 25 条
[1]   DIFFERENTIATION THEOREM IN LP [J].
AKCOGLU, MA ;
KRENGEL, U .
MATHEMATISCHE ZEITSCHRIFT, 1979, 169 (01) :31-40
[2]   DIFFERENTIATION THEOREM FOR ADDITIVE PROCESSES [J].
AKCOGLU, MA ;
KRENGEL, U .
MATHEMATISCHE ZEITSCHRIFT, 1978, 163 (02) :199-210
[3]   2 EXAMPLES OF LOCAL ERGODIC DIVERGENCE [J].
AKCOGLU, MA ;
KRENGEL, U .
ISRAEL JOURNAL OF MATHEMATICS, 1979, 33 (3-4) :225-230
[4]   DIFFERENTIATION OF N-DIMENSIONAL ADDITIVE PROCESSES [J].
AKCOGLU, MA ;
DELJUNCO, A .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1981, 33 (03) :749-768
[5]   A LOCAL RATIO THEOREM [J].
AKCOGLU, MA ;
CACHON, RV .
CANADIAN JOURNAL OF MATHEMATICS, 1970, 22 (03) :545-&
[6]  
AKCOGLU MA, 1985, PAC J MATH, V1196, P257
[7]   LOCAL ERGODIC THEOREM ON LP [J].
BAXTER, JR ;
CHACON, RV .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1974, 26 (05) :1206-1216
[8]   ON THE MODULUS OF ONE-PARAMETER SEMIGROUPS [J].
BECKER, I ;
GREINER, G .
SEMIGROUP FORUM, 1986, 34 (02) :185-201
[9]  
COMEZ D, 1989, C MATH, V57, P103
[10]  
Diestel J., 1977, VECTOR MEASURES