Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system

被引:395
作者
Gou, Xiaolong [1 ]
Xiao, Heng [1 ]
Yang, Suwen [1 ]
机构
[1] Chongqing Univ, Sch Power Engn, Chongqing 400044, Peoples R China
关键词
Thermoelectric generator; Waste heat recovery; Modeling; Optimization; SILICON NANOWIRES; PERFORMANCE; POWER; DESIGN; MERIT;
D O I
10.1016/j.apenergy.2010.02.013
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Thermoelectric generation technology, due to its several kinds of merits, especially its promising applications to waste heat recovery, is becoming a noticeable research direction. Based on basic principles of thermoelectric generation technology and finite time thermodynamics, thermoelectric generator system model has been established. In order to investigate viability and further performance of the thermoelectric generator for waste heat recovery in industry area, a low-temperature waste heat thermoelectric generator setup has been constructed. Through the comparison of results between theoretic analysis and experiment, reasonability of this system model has been verified. Testing results and discussion show the promising potential of using thermoelectric generator for low-temperature waste heat recovery, especially in industrial fields. Several suggestions for system performance improvement have been proposed through the analysis on this system model, which guide optimization and modification of this experimental setup. By integrating theoretic analysis and experiment, it is found that besides increasing waste heat temperature and TE modules in series, expanding heat sink surface area in a proper range and enhancing cold-side heat transfer capacity in a proper range can also be employed to enhance performance of this setup. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3131 / 3136
页数:6
相关论文
共 24 条
[1]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[2]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[3]   Increasing thermoelectric efficiency:: A dynamical systems approach [J].
Casati, Giulio ;
Mejia-Monasterio, Carlos ;
Prosen, Tomaz .
PHYSICAL REVIEW LETTERS, 2008, 101 (01)
[4]   Analysis on the performance of a thermoelectric generator [J].
Chen, JC ;
Wu, C .
JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2000, 122 (02) :61-63
[5]   Effect of heat transfer on the performance of thermoelectric generators [J].
Chen, LG ;
Gong, JZ ;
Sun, FR ;
Wu, C .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2002, 41 (01) :95-99
[6]   Performance optimization for a two-stage thermoelectric heat-pump with internal and external irreversibilities [J].
Chen, Lingen ;
Li, Jun ;
Sun, Fengrui ;
Wu, Chih .
APPLIED ENERGY, 2008, 85 (07) :641-649
[7]   Energy efficiency analysis and impact evaluation of the application of thermoelectric power cycle to today's CHP systems [J].
Chen, Min ;
Lund, Henrik ;
Rosendahl, Lasse A. ;
Condra, Thomas J. .
APPLIED ENERGY, 2010, 87 (04) :1231-1238
[8]   Modelling heat exchangers for thermoelectric generators [J].
Esarte, J ;
Min, G ;
Rowe, DM .
JOURNAL OF POWER SOURCES, 2001, 93 (1-2) :72-76
[9]   Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states [J].
Heremans, Joseph P. ;
Jovovic, Vladimir ;
Toberer, Eric S. ;
Saramat, Ali ;
Kurosaki, Ken ;
Charoenphakdee, Anek ;
Yamanaka, Shinsuke ;
Snyder, G. Jeffrey .
SCIENCE, 2008, 321 (5888) :554-557
[10]   Enhanced thermoelectric performance of rough silicon nanowires [J].
Hochbaum, Allon I. ;
Chen, Renkun ;
Delgado, Raul Diaz ;
Liang, Wenjie ;
Garnett, Erik C. ;
Najarian, Mark ;
Majumdar, Arun ;
Yang, Peidong .
NATURE, 2008, 451 (7175) :163-U5