Decreased Akt kinase activity and insulin resistance in C57BL/KsJ-Leprdb/db mice

被引:126
作者
Shao, J [1 ]
Yamashita, H [1 ]
Qiao, L [1 ]
Friedman, JE [1 ]
机构
[1] Case Western Reserve Univ, Sch Med, Dept Nutr, Cleveland, OH 44106 USA
关键词
D O I
10.1677/joe.0.1670107
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Recent studies suggest that the serine/threonine kinase protein kinase B (PKB or Akt) is involved in the pathway for insulin-stimulated glucose transporter 4 (GLUT4) translocation and glucose uptake. In this study we examined the components of the Akt signaling pathway in skeletal muscle and adipose tissue in vivo from C57BL/ KsJ-Lepr(db/db) mice (db/db), a model of obesity, insulin resistance, and type II diabetes. There were no changes in the protein levels of GLUT4, p85 alpha, or Akt in tissues from db/db mice compared with non-diabetic littermate controls (+/+). In response to acute insulin administration, GLUT4 recruitment to the plasma membrane increased twofold in muscle and adipose tissue from +/+ mice, but was significantly reduced by 42-43% (P<0.05) in both tissues from db/db mice. Insulin increased Akt-Ser(473) phosphorylation by two- to fivefold in muscle and adipose tissue from all mice. However, in db/db mice, maximal Akt-Ser(473) phosphorylation was decreased by 32% (P<0.05) and 69% (P<0.05) in muscle and adipose tissue respectively. This decreased phosphorylation in db/db mice corresponded with a significant decrease in maximal Akt kinase activity using a glycogen synthase kinase-3 fusion protein as a substrate (P<0.05). The level of insulin-stimulated tyrosine phosphorylation of p85 alpha from phosphatidylinosito1 3 (PI 3)-kinase, which is upstream of Akt, was also reduced in muscle and adipose tissue from db/db mice (P<0.05); however, there was no change in extracellular signal regulated kinase-1 or -2 phosphorylation. These data implicate decreased insulin-stimulated Akt kinase activity as an important component underlying impaired GLUT4 translocation and insulin resistance in tissues from db/db mice. However, impaired insulin signal transduction appears to be specific for the PI 3-kinase pathway of insulin signaling, while the MAP kinase pathway remained intact.
引用
收藏
页码:107 / 115
页数:9
相关论文
共 42 条
[1]   Mechanism of activation and function of protein kinase B [J].
Alessi, DR ;
Cohen, P .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1998, 8 (01) :55-62
[2]   Mechanism of activation of protein kinase B by insulin and IGF-1 [J].
Alessi, DR ;
Andjelkovic, M ;
Caudwell, B ;
Cron, P ;
Morrice, N ;
Cohen, P ;
Hemmings, BA .
EMBO JOURNAL, 1996, 15 (23) :6541-6551
[3]  
Andjelkovic M, 1999, MOL CELL BIOL, V19, P5061
[4]   Glucose transport and GLUT4 protein distribution in skeletal muscle of GLUT4 transgenic mice [J].
Brozinick, JT ;
Yaspelkis, BB ;
Wilson, CM ;
Grant, KE ;
Gibbs, M ;
Cushman, SW ;
Ivy, JL .
BIOCHEMICAL JOURNAL, 1996, 313 :133-140
[5]   PROTEIN-KINASE-B (C-AKT) IN PHOSPHATIDYLINOSITOL-3-OH INASE SIGNAL-TRANSDUCTION [J].
BURGERING, BMT ;
COFFER, PJ .
NATURE, 1995, 376 (6541) :599-602
[6]   Insulin increases the association of akt-2 with Glut4-containing vesicles [J].
Calera, MR ;
Martinez, C ;
Liu, HZ ;
El Jack, AK ;
Birnbaum, MJ ;
Pilch, PF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (13) :7201-7204
[7]   Physiological role of Akt in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells [J].
Cong, LN ;
Chen, H ;
Li, YH ;
Zhou, LX ;
McGibbon, MA ;
Taylor, SI ;
Quon, MJ .
MOLECULAR ENDOCRINOLOGY, 1997, 11 (13) :1881-1890
[8]   Signaling mechanisms that regulate glucose transport [J].
Czech, MP ;
Corvera, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (04) :1865-1868
[9]   Akt is a direct target of the phosphatidylinositol 3-kinase - Activation by growth factors, v-src and v-Ha-ras, in Sf9 and mammalian cells [J].
Datta, K ;
Bellacosa, A ;
Chan, TO ;
Tsichlis, PN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (48) :30835-30839
[10]   Effects of insulin on prenylation as a mechanism of potentially detrimental influence of hyperinsulinemia [J].
Draznin, B ;
Miles, P ;
Kruszynska, Y ;
Olefsky, J ;
Friedman, J ;
Golovchenko, I ;
Stjernholm, R ;
Wall, K ;
Reitman, M ;
Accili, D ;
Cooksey, R ;
McClain, D ;
Goalstone, M .
ENDOCRINOLOGY, 2000, 141 (04) :1310-1316