Secondary-structure characterization of two proficient kinase deoxyribozymes

被引:28
作者
Achenbach, JC
Jeffries, GA
McManus, SA
Billen, LP
Li, YF
机构
[1] McMaster Univ, Dept Biochem & Biomed Sci, Hamilton, ON, Canada
[2] McMaster Univ, Dept Chem, Hamilton, ON, Canada
关键词
D O I
10.1021/bi0483054
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Dk1 and Dk2 are two catalytically proficient, manganese-dependent, guanine-rich deoxyribozymes previously isolated for DNA phosphorylation. In this study, we carried out a series of experiments that aimed to understand the structural properties of Dk1 and Dk2 and compare the structural similarities or differences of these two distinct deoxyribozymes that carry out similar catalytic functions. First, we performed reselections from two partially randomized DNA libraries on the basis of the original Dk1 and Dk2 sequences to isolate catalytically active sequence variants and identify nucleotides that are invariable, well-conserved, or highly mutagenized. Sequence analysis of these variants assisted by secondary-structure predictions led to the identification of possible Watson-Crick base-pairing regions within each deoxyribozyme. Sequence truncation and base-pair partner exchange experiments were conducted to confirm, or rule out, the existence of the predicted secondary-structure elements. Finally, methylation interference experiments were applied to identify nucleotides that are potentially important for the tertiary structure folding of the deoxyribozymes. Our data suggest that Dk1 and Dk2, despite the differences in their primary sequences and NTP requirements, use an analogous stem-loop element to anchor a structural domain of substantial tertiary interactions to execute their catalytic functions.
引用
收藏
页码:3765 / 3774
页数:10
相关论文
共 41 条
[1]  
Breaker R R, 1994, Chem Biol, V1, P223, DOI 10.1016/1074-5521(94)90014-0
[2]   A DNA ENZYME WITH MG2+-DEPENDENT RNA PHOSPHOESTERASE ACTIVITY [J].
BREAKER, RR ;
JOYCE, GF .
CHEMISTRY & BIOLOGY, 1995, 2 (10) :655-660
[3]   Cleaving DNA with DNA [J].
Carmi, N ;
Balkhi, SR ;
Breaker, RR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (05) :2233-2237
[4]   In vitro selection of self-cleaving DNAs [J].
Carmi, N ;
Shultz, LA ;
Breaker, RR .
CHEMISTRY & BIOLOGY, 1996, 3 (12) :1039-1046
[5]   Crystal structure of a group I ribozyme domain: Principles of RNA packing [J].
Cate, JH ;
Gooding, AR ;
Podell, E ;
Zhou, KH ;
Golden, BL ;
Kundrot, CE ;
Cech, TR ;
Doudna, JA .
SCIENCE, 1996, 273 (5282) :1678-1685
[6]   A deoxyribozyme that harnesses light to repair thymine dimers in DNA [J].
Chinnapen, DJF ;
Sen, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (01) :65-69
[7]   Making AppDNA using T4 DNA ligase [J].
Chiuman, W ;
Li, YF .
BIOORGANIC CHEMISTRY, 2002, 30 (05) :332-349
[8]   Dinucleotide junction cleavage versatility of 8-17 deoxyribozyme [J].
Cruz, RPG ;
Withers, JB ;
Li, YF .
CHEMISTRY & BIOLOGY, 2004, 11 (01) :57-67
[9]   A DNA METALLOENZYME WITH DNA-LIGASE ACTIVITY [J].
CUENOUD, B ;
SZOSTAK, JW .
NATURE, 1995, 375 (6532) :611-614
[10]   Isolation of high-affinity GTP aptamers from partially structured RNA libraries [J].
Davis, JH ;
Szostak, JW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (18) :11616-11621