Heat stress response and heat stress transcription factors

被引:44
作者
Scharf, KD [1 ]
Hohfeld, I [1 ]
Nover, L [1 ]
机构
[1] Goethe Univ Frankfurt, D-60439 Frankfurt, Germany
关键词
heat stress; transcription factors; reporter assays;
D O I
10.1007/BF02936124
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Expression of heat shock protein (HSP)-coding genes is controlled by heat stress transcription factors (Hsfs). They are structurally and functionally conserved throughout the eukaryotic kingdom. In addition to the DNA-binding domain with the helix-turn-helix motif essential for DNA recognition, three functional parts in the C-terminal activator domain were characterized: (i) the HR-A/B region is responsible for oligomerization and activity control, (ii) the nuclear localizing signal (NLS) formed by a cluster of basic amino acid residues which is required and sufficient for nuclear import and (iii) short C-terminal peptide motifs with a central Trp residue (AHA elements). These three parts are indispensible for the activator function. A peculiaritiy of plants is the heat shock-inducible new synthesis of Hsfs. In tomato HsfAl is constitutively expressed, whereas Hsfs A2 and B1 are heat shock-inducible proteins themselves. We used Hsf knock-out strains of yeast and transient reporter assays in tobacco protoplasts for functional analysis of Hsf-coding cDNA clones and mutants derived from them. HsfA2, which in tomato cell cultures is expressed only after heat shock induction, tends to form large cytoplasmic aggregates together with other HSPs (heat stress granules). In the transient expression assay its relatively low activator potential is evidently due to the inefficient nuclear import. However, the intramolecular shielding of the NLS can be released either by deletion of a short C-terminal fragment or by coexpression with HsfA1, which forms hetero-oligomers with HsfA2.
引用
收藏
页码:313 / 329
页数:17
相关论文
共 176 条
[1]   THE HUMAN HEAT-SHOCK PROTEIN HSP70 INTERACTS WITH HSF, THE TRANSCRIPTION FACTOR THAT REGULATES HEAT-SHOCK GENE-EXPRESSION [J].
ABRAVAYA, K ;
MYERS, MP ;
MURPHY, SP ;
MORIMOTO, RI .
GENES & DEVELOPMENT, 1992, 6 (07) :1153-1164
[2]   ABNORMAL PROTEINS SERVE AS EUKARYOTIC STRESS SIGNALS AND TRIGGER THE ACTIVATION OF HEAT-SHOCK GENES [J].
ANANTHAN, J ;
GOLDBERG, AL ;
VOELLMY, R .
SCIENCE, 1986, 232 (4749) :522-524
[3]   INDUCTION OF GENE ACTIVITY IN DROSOPHILA BY HEAT SHOCK [J].
ASHBURNER, M ;
BONNER, JJ .
CELL, 1979, 17 (02) :241-254
[4]  
Baler R, 1996, CELL STRESS CHAPERON, V1, P33, DOI 10.1379/1466-1268(1996)001<0033:EFAROH>2.3.CO
[5]  
2
[6]   HEAT-SHOCK GENE-REGULATION BY NASCENT POLYPEPTIDES AND DENATURED PROTEINS - HSP70 AS A POTENTIAL AUTOREGULATORY FACTOR [J].
BALER, R ;
WELCH, WJ ;
VOELLMY, R .
JOURNAL OF CELL BIOLOGY, 1992, 117 (06) :1151-1159
[7]   ACTIVATION OF HUMAN HEAT-SHOCK GENES IS ACCOMPANIED BY OLIGOMERIZATION, MODIFICATION, AND RAPID TRANSLOCATION OF HEAT-SHOCK TRANSCRIPTION FACTOR HSF1 [J].
BALER, R ;
DAHL, G ;
VOELLMY, R .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (04) :2486-2496
[8]   EXAMINING THE FUNCTION AND REGULATION OF HSP-70 IN CELLS SUBJECTED TO METABOLIC STRESS [J].
BECKMANN, RP ;
LOVETT, M ;
WELCH, WJ .
JOURNAL OF CELL BIOLOGY, 1992, 117 (06) :1137-1150
[9]  
BENSAUDE O, 1990, P89
[10]   Induction of the DNA-binding and transcriptional activities of heat shock factor 1 is uncoupled in Xenopus oocytes [J].
Bharadwaj, S ;
Hnatov, A ;
Ali, A ;
Ovsenek, N .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 1998, 1402 (01) :79-85