RECQ1 helicase interacts with human mismatch repair factors that regulate genetic recombination

被引:78
作者
Doherty, KM
Sharma, S
Uzdilla, LA
Wilson, TM
Cui, S
Vindigni, A
Brosh, RM
机构
[1] NIA, Lab Mol Gerontol, NIH, Baltimore, MD 21224 USA
[2] Univ Maryland, Dept Radiat Oncol, Radiat Oncol Res Lab, Baltimore, MD 21201 USA
[3] Int Ctr Genet Engn & Biotechnol, I-34012 Trieste, Italy
关键词
D O I
10.1074/jbc.M500265200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Understanding the molecular and cellular functions of RecQ helicases has attracted considerable interest since several human diseases characterized by premature aging and/or cancer have been genetically linked to mutations in genes of the RecQ family. Although a human disease has not yet been genetically linked to a mutation in RECQ1, the prominent roles of RecQ helicases in the maintenance of genome stability suggest that RECQ1 helicase is likely to be important in vivo. To acquire a better understanding of RECQ1 cellular and molecular functions, we have investigated its protein interactions. Using a co-immunoprecipitation approach, we have identified several DNA repair factors that are associated with RECQ1 in vivo. Direct physical interaction of these repair factors with RECQ1 was confirmed with purified recombinant proteins. Importantly, RECQ1 stimulates the incision activity of human exonuclease 1 and the mismatch repair recognition complex MSH2/6 stimulates RECQ1 helicase activity. These protein interactions suggest a role of RECQ1 in a pathway involving mismatch repair factors. Regulation of genetic recombination, a proposed role for RecQ helicases, is supported by the identified RECQ1 protein interactions and is discussed.
引用
收藏
页码:28085 / 28094
页数:10
相关论文
共 55 条
[1]   Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing [J].
Adams, MD ;
McVey, M ;
Sekelsky, JJ .
SCIENCE, 2003, 299 (5604) :265-267
[2]   RecQ helicases: suppressors of tumorigenesis and premature aging [J].
Bachrati, CZ ;
Hickson, ID .
BIOCHEMICAL JOURNAL, 2003, 374 :577-606
[3]   WRN interacts physically and functionally with the recombination mediator protein RAD52 [J].
Baynton, K ;
Otterlei, M ;
Bjorås, M ;
von Kobbe, C ;
Bohr, VA ;
Seeberg, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (38) :36476-36486
[4]   EXO1 contributes to telomere maintenance in both telomerase-proficient and telomerase-deficient Saccharomyces cerevisiae [J].
Bertuch, AA ;
Lundblad, V .
GENETICS, 2004, 166 (04) :1651-1659
[5]   Functional interaction between the Bloom's syndrome helicase and the RAD51 paralog, RAD51L3 (RAD51D) [J].
Braybrooke, JP ;
Li, JL ;
Wu, L ;
Caple, F ;
Benson, FE ;
Hickson, ID .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (48) :48357-48366
[6]   Replication protein A physically interacts with the Bloom's syndrome protein and stimulates its helicase activity [J].
Brosh, RM ;
Li, JL ;
Kenny, MK ;
Karow, JK ;
Cooper, MP ;
Kureekattil, RP ;
Hickson, ID ;
Bohr, VA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (31) :23500-23508
[7]   Biochemical characterization of the DNA substrate specificity of Werner syndrome helicase [J].
Brosh, RM ;
Waheed, J ;
Sommers, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (26) :23236-23245
[8]  
Brosh RM, 2001, EMBO J, V20, P5791
[9]   RecQ helicases: at the heart of genetic stability [J].
Cobb, JA ;
Bjergbaek, L ;
Gasser, SM .
FEBS LETTERS, 2002, 529 (01) :43-48
[10]   Characterization of the DNA-unwinding activity of human RECQ1, a helicase specifically stimulated by human replication protein A [J].
Cui, S ;
Klima, R ;
Ochem, A ;
Arosio, D ;
Falaschi, A ;
Vindigni, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (03) :1424-1432