Deep Watershed Transform for Instance Segmentation

被引:306
作者
Bai, Min [1 ]
Urtasun, Raquel [1 ]
机构
[1] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
来源
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017) | 2017年
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1109/CVPR.2017.305
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most contemporary approaches to instance segmentation use complex pipelines involving conditional random fields, recurrent neural networks, object proposals, or template matching schemes. In this paper, we present a simple yet powerful end-to-end convolutional neural network to tackle this task. Our approach combines intuitions from the classical watershed transform and modern deep learning to produce an energy map of the image where object instances are unambiguously represented as energy basins. We then perform a cut at a single energy level to directly yield connected components corresponding to object instances. Our model achieves more than double the performance over the state-of-the-art on the challenging Cityscapes Instance Level Segmentation task.
引用
收藏
页码:2858 / 2866
页数:9
相关论文
共 34 条
  • [1] [Anonymous], GCPR
  • [2] [Anonymous], P INT WORKSH IM PROC
  • [3] [Anonymous], ECCV
  • [4] [Anonymous], ECCV
  • [5] [Anonymous], CVPR
  • [6] [Anonymous], ARXIV161201105
  • [7] [Anonymous], ICLR
  • [8] [Anonymous], ECCV
  • [9] [Anonymous], 2016, CVPR
  • [10] [Anonymous], 2015, ICLR