Distinct brain networks for adaptive and stable task control in humans

被引:1981
作者
Dosenbach, Nico U. F. [1 ]
Fair, Damien A.
Miezin, Francis M.
Cohen, Alexander L.
Wenger, Kristin K.
Dosenbach, Ronny A. T.
Fox, Michael D.
Snyder, Abraham Z.
Vincent, Justin L.
Raichle, Marcus E.
Schlaggar, Bradley L.
Petersen, Steven E.
机构
[1] Washington Univ, Dept Radiol, St Louis, MO 63110 USA
[2] Washington Univ, Dept Neurol, St Louis, MO 63110 USA
[3] Washington Univ, Dept Neurobiol & Anat, St Louis, MO 63110 USA
[4] Washington Univ, Dept Pediat, St Louis, MO 63130 USA
[5] Washington Univ, Dept Psychol, St Louis, MO 63130 USA
关键词
attention; connectivity; executive control; functional MRI; task set;
D O I
10.1073/pnas.0704320104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Control regions in the brain are thought to provide signals that configure the brain's moment-to-moment information processing. Previously, we identified regions that carried signals related to task-control initiation, maintenance, and adjustment. Here we characterize the interactions of these regions by applying graph theory to resting state functional connectivity MRI data. In contrast to previous, more unitary models of control, this approach suggests the presence of two distinct task-control networks. A frontoparietal network included the dorsolateral prefrontal cortex and intraparietal sulcus. This network emphasized start-cue and error-related activity and may initiate and adapt control on a trial-by-trial basis. The second network included dorsal anterior cingulate/medial superior frontal cortex, anterior insula/frontal operculum, and anterior prefrontal cortex. Among other signals, these regions showed activity sustained across the entire task epoch, suggesting that this network may control goal-directed behavior through the stable maintenance of task sets. These two independent networks appear to operate on different time scales and affect downstream processing via dissociable mechanisms.
引用
收藏
页码:11073 / 11078
页数:6
相关论文
共 55 条
  • [1] A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
    Achard, S
    Salvador, R
    Whitcher, B
    Suckling, J
    Bullmore, ET
    [J]. JOURNAL OF NEUROSCIENCE, 2006, 26 (01) : 63 - 72
  • [2] Selection, integration, and conflict monitoring: Assessing the nature and generality of prefrontal cognitive control mechanisms
    Badre, D
    Wagner, AD
    [J]. NEURON, 2004, 41 (03) : 473 - 487
  • [3] FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI
    BISWAL, B
    YETKIN, FZ
    HAUGHTON, VM
    HYDE, JS
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) : 537 - 541
  • [4] Conflict monitoring and anterior cingulate cortex: an update
    Botvinick, Matthew M.
    Cohen, Jonathan D.
    Carter, Cameron S.
    [J]. TRENDS IN COGNITIVE SCIENCES, 2004, 8 (12) : 539 - 546
  • [5] Extracting core components of cognitive control
    Braver, Todd S.
    Barch, Deanna M.
    [J]. TRENDS IN COGNITIVE SCIENCES, 2006, 10 (12) : 529 - 532
  • [6] Neural mechanisms of transient and sustained cognitive control during task switching
    Braver, TS
    Reynolds, JR
    Donaldson, DI
    [J]. NEURON, 2003, 39 (04) : 713 - 726
  • [7] Neural circuitry underlying rule use in humans and nonhuman primates
    Bunge, SA
    Wallis, JD
    Parker, A
    Brass, M
    Crone, EA
    Hoshi, E
    Sakai, K
    [J]. JOURNAL OF NEUROSCIENCE, 2005, 25 (45) : 10347 - 10350
  • [8] Immature frontal lobe contributions to cognitive control in children: Evidence from fMRI
    Bunge, SA
    Dudukovic, NM
    Thomason, ME
    Vaidya, CJ
    Gabrieli, JDE
    [J]. NEURON, 2002, 33 (02) : 301 - 311
  • [9] Strategy application disorder: the role of the frontal lobes in human multitasking
    Burgess, PW
    [J]. PSYCHOLOGICAL RESEARCH-PSYCHOLOGISCHE FORSCHUNG, 2000, 63 (3-4): : 279 - 288
  • [10] The physiological basis of attentional modulation in extrastriate visual areas
    Chawla, D
    Rees, G
    Friston, KJ
    [J]. NATURE NEUROSCIENCE, 1999, 2 (07) : 671 - 676