Exploring the ubiquinone binding cavity of respiratory complex I

被引:93
作者
Tocilescu, Maja A. [1 ]
Fendel, Uta [1 ]
Zwicker, Klaus [1 ]
Kerscher, Stefan [1 ]
Brandt, Ulrich [1 ]
机构
[1] Univ Frankfurt Klinikum, Zentrum Biol Chem Mol Bioenerget, Fachbereich Med, Ctr Excellence Frankfurt Macromol Complexes, D-60590 Frankfurt, Germany
关键词
D O I
10.1074/jbc.M704519200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Proton pumping respiratory complex I is a major player in mitochondrial energy conversion. Yet little is known about the molecular mechanism of this large membrane protein complex. Understanding the details of ubiquinone reduction will be prerequisite for elucidating this mechanism. Based on a recently published partial structure of the bacterial enzyme, we scanned the proposed ubiquinone binding cavity of complex I by site-directed mutagenesis in the strictly aerobic yeast Yarrowia lipolytica. The observed changes in catalytic activity and inhibitor sensitivity followed a consistent pattern and allowed us to define three functionally important regions near the ubiquinone-reducing iron-sulfur cluster N2. We identified a likely entry path for the substrate ubiquinone and defined a region involved in inhibitor binding within the cavity. Finally, we were able to highlight a functionally critical structural motif in the active site that consisted of Tyr-144 in the 49-kDa subunit, surrounded by three conserved hydrophobic residues.
引用
收藏
页码:29514 / 29520
页数:7
相关论文
共 33 条
[1]   Function of conserved acidic residues in the PSST homologue of complex I (NADH:Ubiquinone oxidoreductase) from Yarrowia lipolytica [J].
Ahlers, PM ;
Zwicker, K ;
Kerscher, S ;
Brandt, U .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (31) :23577-23582
[2]   INTIMATE-RELATIONSHIPS OF THE LARGE AND THE SMALL SUBUNITS OF ALL NICKEL HYDROGENASES WITH 2 NUCLEAR-ENCODED SUBUNITS OF MITOCHONDRIAL NADH - UBIQUINONE OXIDOREDUCTASE [J].
ALBRACHT, SPJ .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1144 (02) :221-224
[3]  
[Anonymous], MEMBRANE PROTEIN PUR
[4]   NUCLEOTIDE-SEQUENCE AND EXPRESSION OF AN OPERON IN ESCHERICHIA-COLI CODING FOR FORMATE HYDROGENYLASE COMPONENTS [J].
BOHM, R ;
SAUTER, M ;
BOCK, A .
MOLECULAR MICROBIOLOGY, 1990, 4 (02) :231-243
[5]   A novel, enzymatically active conformation of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I) [J].
Böttcher, B ;
Scheide, D ;
Hesterberg, M ;
Nagel-Steger, L ;
Friedrich, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (20) :17970-17977
[6]   Energy converting NADH:Quinone oxidoreductase (Complex I) [J].
Brandt, Ulrich .
ANNUAL REVIEW OF BIOCHEMISTRY, 2006, 75 :69-92
[7]   One-step transformation of the dimorphic yeast Yarrowia lipolytica [J].
Chen, DC ;
Beckerich, JM ;
Gaillardin, C .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1997, 48 (02) :232-235
[8]  
CLASON T, 2007, IN PRESS J STRUCT BI
[9]   The 49-kDa subunit of NADH-ubiquinone oxidoreductase (Complex I) is involved in the binding of piericidin and rotenone, two quinone-related inhibitors [J].
Darrouzet, E ;
Issartel, JP ;
Lunardi, J ;
Dupuis, A .
FEBS LETTERS, 1998, 431 (01) :34-38
[10]   Biophysical and structural characterization of proton-translocating NADH-dehydrogenase (complex I) from the strictly aerobic yeast Yarrowia lipolytica [J].
Djafarzadeh, R ;
Kerscher, S ;
Zwicker, K ;
Radermacher, M ;
Lindahl, M ;
Schägger, H ;
Brandt, U .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2000, 1459 (01) :230-238