Levy-Gromov's isoperimetric inequality for an infinite dimensional diffusion generator

被引:89
作者
Bakry, D
Ledoux, M
机构
[1] Dept. de Mathématiques, Lab. Statistique Probabilites A., Université Paul-Sabatier
关键词
D O I
10.1007/s002220050026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish, by simple semigroup arguments, a Levy-Gromov isoperimetric inequality for the invariant measure of an infinite dimensional diffusion generator of positive curvature with isoperimetric model the Gaussian measure. This produces in particular a new proof of the Gaussian isoperimetric inequality. This isoperimetric inequality strengthens the classical logarithmic Sobolev inequality in this context. A local version for the heat kernel measures is also proved, which may then be extended into an isoperimetric inequality for the Wiener measure on the paths of a Riemannian manifold with bounded Ricci curvature.
引用
收藏
页码:259 / 281
页数:23
相关论文
共 32 条
[1]  
AIDA S, 1994, LOGARITHMIC SOBOLEV
[2]  
[Anonymous], PROGR PROBAB
[3]  
BAKRY D, 1986, CR ACAD SCI I-MATH, V303, P23
[4]  
BAKRY D, 1994, IN PRESS SOBOLEV LOG
[5]  
BAKRY D, 1985, SEM PROB 19 LECT NOT, V1123, P175
[6]  
Bakry D., 1985, LECT NOTES MATH, V19, P145
[7]  
Bakry D., 1994, LECT NOTES MATH, V1581, P1, DOI 10.1007/BFb0073872
[8]  
BENTALEB A, 1993, THESIS TOULOUSE
[9]  
BOBKOV S, 1993, FUNCTIONAL FORM ISOP
[10]  
BOBKOV S, 1995, CONNECTIONS SOBOLEV