A self-orthogonal doubly even code invariant under McL: 2

被引:22
作者
Moori, J [1 ]
Rodrigues, BG
机构
[1] Univ KwaZulu Natal, Sch Math Sci, ZA-3209 Pietermaritzburg, South Africa
[2] Univ KwaZulu Natal, Sch Math Sci, ZA-4041 Durban, South Africa
关键词
code; design; McLaughlin group;
D O I
10.1016/j.jcta.2004.10.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine a design D and a binary code C constructed from a primitive permutation representation of degree 275 of the sporadic simple group (ML)-L-c. We prove that Aut(C) = Aut(D) = (ML)-L-c : 2 and determine the weight distribution of the code and that of its dual. In Section 5, we show that for a word w(i) of weight i, where i is an element of {100, 112, 164, 176} the stabilizer ((ML)-L-c)(wi) is a maximal subgroup of (ML)-L-c. The words of weight 128 splits into three orbits C-(128)1, C-(128)2 and C-(128)3, and similarly the words of weights 132 produces the orbits C-(132)1 and C-(132)2. For w(i) is an element of {C-(128)1, C-(128)2, C-(132)1}, we prove that ((ML)-L-c)(wi) is a maximal subgroup of (ML)-L-c. Further in Section 6, we deal with the stabilizers ((ML)-L-c : 2)(wi) by extending the results of Section 5 to (ML)-L-c : 2. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:53 / 69
页数:17
相关论文
共 13 条
[1]  
[Anonymous], 1995, LONDON MATH SOC MONO
[2]  
Assmus Jr. E.F., 1992, CAMBRIDGE TRACTS MAT, V103
[3]  
Bosma W., 1994, Handbook of Magma functions
[4]   A GLOBAL CODE INVARIANT UNDER THE HIGMAN-SIMS GROUP [J].
CALDERBANK, AR ;
WALES, DB .
JOURNAL OF ALGEBRA, 1982, 75 (01) :233-260
[5]   MAXIMAL SUBGROUPS OF CONWAYS GROUP C3 AND MCLAUGHLINS GROUP [J].
FINKELST.L .
JOURNAL OF ALGEBRA, 1973, 25 (01) :58-89
[6]   A DESIGN AND A CODE INVARIANT UNDER THE SIMPLE-GROUP CO3 [J].
HAEMERS, WH ;
PARKER, C ;
PLESS, V ;
TONCHEV, VD .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 62 (02) :225-233
[7]  
Huffman WC, 1998, HANDBOOK OF CODING THEORY, VOLS I & II, P1345
[8]  
Key J. D., 2002, Journal of Combinatorial Mathematics and Combinatorial Computing, V40, P143
[9]  
Key J. D., 2003, Journal of Combinatorial Mathematics and Combinatorial Computing, V45, P3
[10]  
MOORI J, UNPUB SELF ORTHOGONA