CUBIT and seismic wave propagation based upon the spectral-element method: An advanced unstructured mesher for complex 3D geological media

被引:44
作者
Casarotti, Emanuele [1 ]
Stupazzini, Marco [2 ]
Lee, Shiann Jong [3 ]
Komatitsch, Dimitri [4 ]
Piersanti, Antonio [5 ]
Tromp, Jeroen [1 ]
机构
[1] CALTECH, Seismol Lab, 1200 E Calif Blvd,MS 25221, Pasadena, CA 91125 USA
[2] Univ Munich, Dept Earth Environm Sci, Geophys Sect, D-80333 Munich, Germany
[3] Acad Sinica, Inst Earth Sci, Taipei 115, Taiwan
[4] Univ Pau Pays Ladour, Lab Modlisat Dim Gosci, UMR 5212, F-64013 Pau, France
[5] Ist Nazl Geofis Vulcanol, I-00143 Rome, Italy
来源
PROCEEDINGS OF THE 16TH INTERNATIONAL MESHING ROUNDTABLE | 2008年
基金
美国国家科学基金会;
关键词
D O I
10.1007/978-3-540-75103-8_32
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Unstructured hexahedral mesh generation is a critical part of the modeling process in the Spectral-Element Method (SEM). We present some examples of seismic wave propagation in complex geological models, automatically meshed on a parallel machine based upon CUBIT (Sandia Laboratory, cubit. sandia. gov) I an advanced 3D unstructured hexahedral mesh generator that, offers new opportunities for seismologist to design, assess, and improve the quality of a mesh in terms of both geometrical and numerical accuracy. The main goal is to provide useful tools for understanding seismic phenomena due to surface topography and subsurface structures such as low wave-speed sedimentary basins. Our examples cover several typical geophysical problems: 1) "layer-cake" volumes with high-resolution topography and complex solid-solid interfaces (such as the Campi Flegrei Caldera Area in Italy), and 2) models with an embedded sedimentary basin (such as the Taipei basin in Taiwan or the Grenoble Valley in France).
引用
收藏
页码:579 / +
页数:3
相关论文
共 18 条
[1]  
Bielak J, 2005, CMES-COMP MODEL ENG, V10, P99
[2]  
BOUCHON M, 2007, ADV WAVE PROPAGATION
[3]   Partial differential equations of mathematical physics [J].
Courant, R ;
Friedrichs, K ;
Lewy, H .
MATHEMATISCHE ANNALEN, 1928, 100 :32-74
[4]   Nonlinear SEM numerical analyses of dry dense sand specimens under rapid and dynamic loading [J].
di Prisco, C. ;
Stupazzini, M. ;
Zambelli, C. .
INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2007, 31 (06) :757-788
[5]   Comment on "Domain reduction method for three-dimensional earthquake modeling in localized regions, Part 1: Theory," by J. Bielak, K. Loukakis, Y. Hisada, and C. Yoshimura, and "Part II: Verification and applications," by C. Yoshimura, J. Bielak, Y. Hisada, and A. Fernandez [J].
Faccioli, E ;
Vanini, A ;
Paolucci, R ;
Stupazzini, A .
BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2005, 95 (02) :763-769
[6]   An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes -: III.: Viscoelastic attenuation [J].
Kaeser, Martin ;
Dumbser, Michael ;
de la Puente, Josep ;
Igel, Heiner .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2007, 168 (01) :224-242
[7]   Simulations of ground motion in the Los Angeles basin based upon the spectral-element method [J].
Komatitsch, D ;
Liu, QY ;
Tromp, J ;
Suss, P ;
Stidham, C ;
Shaw, JH .
BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2004, 94 (01) :187-206
[8]   Wave propagation in 2-D elastic media using a spectral element method with triangles and quadrangles [J].
Komatitsch, D ;
Martin, R ;
Tromp, J ;
Taylor, MA ;
Wingate, BA .
JOURNAL OF COMPUTATIONAL ACOUSTICS, 2001, 9 (02) :703-718
[9]   Simulation of anisotropic wave propagation based upon a spectral element method [J].
Komatitsch, D ;
Barnes, C ;
Tromp, J .
GEOPHYSICS, 2000, 65 (04) :1251-1260
[10]  
Komatitsch D, 2013, SEISMIC EARTH ARRAY, P205, DOI [DOI 10.1029/157GM13, 10. 1029/157GM13, DOI 10.1029/156GM13]