Thermodynamics of the hydroxyl radical addition to isoprene

被引:33
作者
Allodi, Marco A. [1 ]
Kirschner, Karl N. [1 ]
Shields, George C. [1 ]
机构
[1] Hamilton Coll, Ctr Mol Design, Dept Chem, Clinton, NY 13323 USA
关键词
D O I
10.1021/jp801869c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Oxidation of isoprene by the hydroxyl radical leads to tropospheric ozone formation. Consequently, a more complete understanding of this reaction could lead to better models of regional air quality, a better understanding of aerosol formation, and a better understanding of reaction kinetics and dynamics. The most common first step in the oxidation of isoprene is the formation of an adduct, with the hydroxyl radical adding to one of four unsaturated carbon atoms in isoprene. In this paper, we discuss how the initial conformations of isoprene, s-trans and s-gauche, influences the pathways to adduct formation. We explore the formation of pre-reactive complexes at low and high temperatures, which are often invoked to explain the negative temperature dependence of this reaction's kinetics. We show that at higher temperatures the free energy surface indicates that a pre-reactive complex is unlikely, while at low temperatures the complex exists on two reaction pathways. The theoretical results show that at low temperatures all eight pathways possess negative reaction barriers, and reaction energies that range from -36.7 to -23.0 kcal.mol(-1). At temperatures in the lower atmosphere, all eight pathways possess positive reaction barriers that range from 3.8 to 6.0 kcal.mol(-1) and reaction energies that range from -28.8 to -14.4 kcal.mol(-1).
引用
收藏
页码:7064 / 7071
页数:8
相关论文
共 115 条
[1]   TRANSITION-STATES AND ENERGY BARRIERS FROM DENSITY-FUNCTIONAL STUDIES - REPRESENTATIVE ISOMERIZATION-REACTIONS [J].
ABASHKIN, Y ;
RUSSO, N ;
TOSCANO, M .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1994, 52 (04) :695-704
[2]   Structure-reactivity relationship in ketones plus OH reactions: A quantum mechanical and TST approach [J].
Alvarez-Idaboy, JR ;
Cruz-Torres, A ;
Galano, A ;
Ruiz-Santoyo, ME .
JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (14) :2740-2749
[3]   A quantum chemical and classical transition state theory explanation of negative activation energies in OH addition to substituted ethenes [J].
Alvarez-Idaboy, JR ;
Mora-Diez, N ;
Vivier-Bunge, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (15) :3715-3720
[4]   A DENSITY-FUNCTIONAL STUDY OF CHEMICAL-REACTIONS [J].
ANDZELM, J ;
BAKER, J ;
SCHEINER, A ;
WRINN, M .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1995, 56 (06) :733-746
[5]   FORMATION OF 3-METHYLFURAN FROM THE GAS-PHASE REACTION OF OH RADICALS WITH ISOPRENE AND THE RATE-CONSTANT FOR ITS REACTION WITH THE OH RADICAL [J].
ATKINSON, R ;
ASCHMANN, SM ;
TUAZON, EC ;
AREY, J ;
ZIELINSKA, B .
INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 1989, 21 (07) :593-604
[6]   Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II - gas phase reactions of organic species [J].
Atkinson, R. ;
Baulch, D. L. ;
Cox, R. A. ;
Crowley, J. N. ;
Hampson, R. F. ;
Hynes, R. G. ;
Jenkin, M. E. ;
Rossi, M. J. ;
Troe, J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :3625-4055
[7]   Gas-phase tropospheric chemistry of volatile organic compounds .1. Alkanes and alkenes [J].
Atkinson, R .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1997, 26 (02) :215-290
[8]   GAS-PHASE TROPOSPHERIC CHEMISTRY OF ORGANIC-COMPOUNDS - A REVIEW [J].
ATKINSON, R .
ATMOSPHERIC ENVIRONMENT PART A-GENERAL TOPICS, 1990, 24 (01) :1-41
[9]   Formation and reaction of hydroxycarbonyls from the reaction of OH radicals with 1,3-butadiene and isoprene [J].
Baker, J ;
Arey, J ;
Atkinson, R .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (11) :4091-4099
[10]   OH+H-2-]H2O+H - THE IMPORTANCE OF EXACT EXCHANGE IN DENSITY-FUNCTIONAL THEORY [J].
BAKER, J ;
ANDZELM, J ;
MUIR, M ;
TAYLOR, PR .
CHEMICAL PHYSICS LETTERS, 1995, 237 (1-2) :53-60