The dof transcription factor OBP3 modulates phytochrome and cryptochroome signaling in Arabidopsis

被引:150
作者
Ward, JM [1 ]
Cufr, CA [1 ]
Denzel, MA [1 ]
Neff, MM [1 ]
机构
[1] Washington Univ, Dept Biol, St Louis, MO 63130 USA
关键词
D O I
10.1105/tpc.104.027722
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plants perceive subtle changes in light quality and quantity through a set of photoreceptors, including phytochromes and cryptochromes. Upon perception, these photoreceptors initiate signal transduction pathways leading to photomorphogenic changes in development. Using activation-tagging mutagenesis to identify novel light-signaling components, we have isolated a gain-of-function mutant, sob I-D (suppressor of phytochrome B-4 [phyB-4] dominant), which suppresses the long-hypocotyl phenotype of the phyB missense allele, phyB-4. The sob1-D mutant phenotype is caused by the overexpression of a Dof (DNA binding with one finger) transcription factor, OBF4 Binding Protein 3 (OBP3). A translational fusion between OBP and green fluorescent protein is nuclear localized in onion (Allium cepa) cells. Tissue-specific accumulation of an OBP3:OBP3-beta-glucuronidase translational fusion is regulated by light in Arabidopsis thaliana. Hypocotyls of transgenic lines with reduced OBP3 expression are less responsive to red light. This aberrant phenotype in red light requires functional phyB, suggesting that OBP is a positive regulator of phyB-mediated inhibition of hypocotyl elongation. Furthermore, these partial-loss-of-function lines have larger cotyledons. This light-dependent cotyledon phenotype is most dramatic in blue light and requires functional cryptochrome 1 (cry1), indicating that OBP3 is a negative regulator of cry1-mediated cotyledon expansion. These results suggest a model where OBP3 is a component in both phyB and cry1 signaling pathways, acting as a positive and negative regulator, respectively. An alternate, though not mutually exclusive, model places OBP3 as a general inhibitor of tissue expansion with phyB and cry1, differentially modulating OBP's role in this response.
引用
收藏
页码:475 / 485
页数:11
相关论文
共 51 条
[1]   HY4 GENE OF A-THALIANA ENCODES A PROTEIN WITH CHARACTERISTICS OF A BLUE-LIGHT PHOTORECEPTOR [J].
AHMAD, M ;
CASHMORE, AR .
NATURE, 1993, 366 (6451) :162-166
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]   Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis [J].
Bauer, D ;
Viczián, A ;
Kircher, S ;
Nobis, T ;
Nitschke, R ;
Kunkel, T ;
Panigrahi, KCS ;
Adám, É ;
Fejes, E ;
Schäfer, E ;
Nagy, F .
PLANT CELL, 2004, 16 (06) :1433-1445
[4]   Phototropins 1 and 2: versatile plant blue-light receptors [J].
Briggs, WR ;
Christie, JM .
TRENDS IN PLANT SCIENCE, 2002, 7 (05) :204-210
[5]   Conditional synergism between cryptochrome 1 and phytochrome B is shown by the analysis of phyA, phyB, and hy4 simple, double, and triple mutants in Arabidopsis [J].
Casal, JJ ;
Mazzella, MA .
PLANT PHYSIOLOGY, 1998, 118 (01) :19-25
[6]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[7]   HFR1, a putative bHLH transcription factor, mediates both phytochrome A and cryptochrome signalling [J].
Duek, PD ;
Fankhauser, C .
PLANT JOURNAL, 2003, 34 (06) :827-836
[8]   Biochemical characterization of Arabidopsis wild-type and mutant phytochrome B holoproteins [J].
Elich, TD ;
Chory, J .
PLANT CELL, 1997, 9 (12) :2271-2280
[9]  
Fairchild CD, 2000, GENE DEV, V14, P2377
[10]   RSF1, an Arabidopsis locus implicated in phytochrome A signaling [J].
Fankhauser, C ;
Chory, J .
PLANT PHYSIOLOGY, 2000, 124 (01) :39-45