Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive

被引:219
作者
Liu, WR
Guo, ZZ
Young, WS
Shieh, DT
Wu, HC
Yang, MH
Wu, NL [1 ]
机构
[1] Natl Taiwan Univ, Dept Chem Engn, Taipei 106, Taiwan
[2] ITRI, Mat Res Labs, Hsinchu 310, Taiwan
关键词
lithium ion battery; silicon; anode; cycle-life;
D O I
10.1016/j.jpowsour.2004.07.032
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effects of Si particle size and the amount of carbon-based conductive additive (CA) on the performance of a Si anode in a Li-ion battery are investigated by adopting combinations of two different Si particle sizes (20 and 3 mum on average) and CA contents (15 and 30 wt.%), respectively. The CA contains graphitic flakes and nano-sized carbon black. Cyclic voltammetry, charge-discharge tests, scanning electron microscopy and X-ray diffraction establish that the CA content has a profound effect on the cycle-life and irreversible capacity of the Si anode. The former increases, while the latter decreases significantly with increasing CA content. Reducing the particle size of Si, on the other hand, facilitates the alloying/de-alloying kinetics. For instance a cycle-life of over 50 cycles with >96% capacity retention at a charge capacity of 600 mAh per g-Si has been demonstrated by adopting of 30 wt.% CA and 3 mum Si particles. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 12 条
[1]   Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations [J].
Dimov, N ;
Kugino, S ;
Yoshio, M .
ELECTROCHIMICA ACTA, 2003, 48 (11) :1579-1587
[2]   Characterization of carbon-coated silicon - Structural evolution and possible limitations [J].
Dimov, N ;
Fukuda, K ;
Umeno, T ;
Kugino, S ;
Yoshio, M .
JOURNAL OF POWER SOURCES, 2003, 114 (01) :88-95
[3]   Structured silicon anodes for lithium battery applications [J].
Green, M ;
Fielder, E ;
Scrosati, B ;
Wachtler, M ;
Serra Moreno, J .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (05) :A75-A79
[4]   The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature [J].
Li, H ;
Huang, XJ ;
Chen, LQ ;
Zhou, GW ;
Zhang, Z ;
Yu, DP ;
Mo, YJ ;
Pei, N .
SOLID STATE IONICS, 2000, 135 (1-4) :181-191
[5]   Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage [J].
Limthongkul, P ;
Jang, YI ;
Dudney, NJ ;
Chiang, YM .
ACTA MATERIALIA, 2003, 51 (04) :1103-1113
[6]   Magnesium silicide as a negative electrode material for lithium-ion batteries [J].
Roberts, GA ;
Cairns, EJ ;
Reimer, JA .
JOURNAL OF POWER SOURCES, 2002, 110 (02) :424-429
[7]  
Seok II K., 2000, ELECTROCHEM SOLID ST, V3, P493
[8]  
SEOK K, 2003, ELECTROCHEM SOLID ST, V6, pA157
[9]   Nanocrystalline NiSi alloy as an anode material for lithium-ion batteries [J].
Wang, GX ;
Sun, L ;
Bradhurst, DH ;
Zhong, S ;
Dou, SX ;
Liu, HK .
JOURNAL OF ALLOYS AND COMPOUNDS, 2000, 306 (1-2) :249-252
[10]   Si/C composites for high capacity lithium storage materials [J].
Yang, J ;
Wang, BF ;
Wang, K ;
Liu, Y ;
Xie, JY ;
Wen, ZS .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (08) :A154-A156