Two heuristics for the Euclidean Steiner tree problem

被引:23
作者
Dreyer, DR [1 ]
Overton, ML
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
[2] NYU, Courant Inst Math Sci, Dept Comp Sci, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
Euclidean Steiner tree; interior-point algorithm;
D O I
10.1023/A:1008285504599
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The Euclidean Steiner tree problem is to find the tree with minimal Euclidean length spanning a set of fixed points in the plane, allowing the addition of auxiliary points to the set (Steiner points). The problem is NP-hard, so polynomial-time heuristics are desired. We present two such heuristics, both of which utilize an efficient method for computing a locally optimal tree with a given topology. The first systematically inserts Steiner points between edges of the minimal spanning tree meeting at angles less than 120 degrees, performing a local optimization at the end. The second begins by finding the Steiner tree for three of the fixed points. Then, at each iteration, it introduces a new fixed point to the tree, connecting it to each possible edge by inserting a Steiner point, and minimizes over all connections, performing a local optimization for each. We present a variety of test cases that demonstrate the strengths and weaknesses of both algorithms.
引用
收藏
页码:95 / 106
页数:12
相关论文
共 7 条
[1]  
ANDERSEN ED, 1996, APOS USERS MANUAL QM
[2]  
[Anonymous], 1961, CAN MATH BULLETIN, DOI DOI 10.4153/CMB-1961-016-2
[3]  
Chung F. R. K., 1978, ANN DISCRETE MATH, V2, P173, DOI 10.1016/S0167-5060(08)70332-7
[4]  
CONN AR, 1994, PRIMAL DUAL INTERIOR
[5]   COMPLEXITY OF COMPUTING STEINER MINIMAL TREES [J].
GAREY, MR ;
GRAHAM, RL ;
JOHNSON, DS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (04) :835-859
[6]   STEINER MINIMAL TREES [J].
GILBERT, EN ;
POLLAK, HO .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (01) :1-&
[7]  
Hwang F., 1992, The Steiner Tree Problem