Plasticity of mitochondrial calcium signaling

被引:74
作者
Csordás, G [1 ]
Hajnóczky, G [1 ]
机构
[1] Thomas Jefferson Univ, Dept Pathol Anat & Cell Biol, Philadelphia, PA 19107 USA
关键词
D O I
10.1074/jbc.M305248200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Evidence is emerging that a quasisynaptic local communication facilitates the calcium signaling between endoplasmic reticulum and mitochondria. However, it remains elusive whether the machinery of mitochondrial calcium signaling displays plasticity similar to the synaptic transmission. Here we studied the relationship between inositol 1,4,5-trisphosphate (IP3)-linked cytosolic [Ca2+] ([Ca2+](c)) oscillations and the associated rise in mitochondrial matrix [Ca2+] ([Ca2+](m)) in RBL-2H3 mast cells. We observed that the second [Ca2+](c) spike is often associated with a larger rise in the [Ca2+](m) than the first. It would appear that this phenomenon was not due to a change in the driving force for Ca2+ uptake and therefore must be due to an enhanced Ca2+ permeability of the mitochondrial Ca2+ uptake sites ( uniporter). To investigate the activation and deactivation kinetics of the uniporter during IP3 receptor-mediated Ca2+ mobilization, we established novel methods. Using these approaches, we demonstrated that the IP3-induced increase in the permeability of the uniporter lasted longer than the Ca2+ signal. The sustained increase in Ca2+ permeability was bidirectional. Furthermore, the addition of Ca2+ during the decay of the IP3 effect evoked a large further increase in the uniporter permeability. Calmodulin inhibitors did not interfere with the IP3-induced initial activation of the uniporter but inhibited the sustained phase. These results suggest that the uniporter displays a calmodulin-mediated facilitation. This plasticity may allow cooperation among sequential IP3 receptor-mediated [Ca2+] transients in the control of calcium signal propagation to the mitochondria.
引用
收藏
页码:42273 / 42282
页数:10
相关论文
共 62 条
[1]  
ALI H, 1990, J BIOL CHEM, V265, P745
[2]   Mitochondrial oversight of cellular Ca2+ signaling [J].
Babcock, DF ;
Hille, B .
CURRENT OPINION IN NEUROBIOLOGY, 1998, 8 (03) :398-404
[3]   BELL-SHAPED CALCIUM-RESPONSE CURVES OF INS(1,4,5)P3-GATED AND CALCIUM-GATED CHANNELS FROM ENDOPLASMIC-RETICULUM OF CEREBELLUM [J].
BEZPROZVANNY, I ;
WATRAS, J ;
EHRLICH, BE .
NATURE, 1991, 351 (6329) :751-754
[4]   The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria [J].
Chalmers, S ;
Nicholls, DG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (21) :19062-19070
[5]   Mitochondrial Ca2+ uptake depends on the spatial and temporal profile of cytosolic Ca2+ signals [J].
Collins, TJ ;
Lipp, P ;
Berridge, MJ ;
Bootman, MD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (28) :26411-26420
[6]   tcBid promotes Ca2+ signal propagation to the mitochondria:: control of Ca2+ permeation through the outer mitochondrial membrane [J].
Csordás, G ;
Madesh, M ;
Antonsson, B ;
Hajnóczky, G .
EMBO JOURNAL, 2002, 21 (09) :2198-2206
[7]   Sorting of calcium signals at the junctions of endoplasmic reticulum and mitochondria [J].
Csordás, G ;
Hajnóczky, G .
CELL CALCIUM, 2001, 29 (04) :249-262
[8]   Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria [J].
Csordás, G ;
Thomas, AP ;
Hajnóczky, G .
EMBO JOURNAL, 1999, 18 (01) :96-108
[10]   Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations [J].
De Koninck, P ;
Schulman, H .
SCIENCE, 1998, 279 (5348) :227-230